

KrosFlo[®] TFDF[®] Lab System

Benutzerhandbuch

Die in diesem Dokument enthaltenen Informationen können ohne Vorankündigung geändert werden.

Repligen Corporation übernimmt keinerlei Garantie in Bezug auf dieses Material, einschließlich, aber nicht beschränkt auf die stillschweigende Garantie der Marktgängigkeit und der Eignung für einen bestimmten Zweck.

Die Repligen Corporation haftet nicht für Fehler, die in dem vorliegenden Dokument enthalten sind, oder für zufällige oder Folgeschäden im Zusammenhang mit der Bereitstellung, Leistung oder Verwendung dieses Materials.

Kein Teil dieses Dokuments darf ohne die vorherige schriftliche Zustimmung der Repligen Corporation fotokopiert, reproduziert oder in eine andere Sprache übersetzt werden.

Weitere Informationen erhalten Sie von der Repligen Corporation unter www.repligen.com.

©2022 Repligen Corporation. Alle Rechte vorbehalten. Die hier erwähnten Marken sind Eigentum der Repligen Corporation und/oder ihrer Tochtergesellschaft(en) oder ihrer jeweiligen Eigentümer.

Kundenbetreuung 508-845-6400 customerserviceUS@repligen.com

Repligen Corporation 111 Locke Drive Marlborough, MA 01752 www.repligen.com

Inhalt

1.	Einleitung	8
2.	Willkommen	8
3.	Über dieses Dokument	9
4.	Sicherheits vorkehrungen	9
	4.1 Steuergerät	11
	4.2 Pumpstation	11
	4.3 TFDF [®] -Filter	12
5.	Einrichtung	14
	5.1 Platzanforderungen	14
	5.2 Systemanordnung	14
	5.3 Montage des Ständers	15
	5.4 Systemkabelverbindungen	16
	5.4.1 Optionale Verbindungen	16
	5.5 ProConnex [®] TFDF [®] Flow Path	17
	5.6 Flow Path installieren	18
	5.6.1 20 cm Flow Path-Installation	18
	5.6.2 108 cm Flow Path-Installation	19
	5.7 Drucksensor im Flow Path (Fließweg) und Schlauchanschlüsse	21
	5.7.1 Anschlüsse für Drucksensoren im Fließweg	21
	5.7.2 Schlauchverbindungen	22
6.	Erste Schritte	23
	6.1 Erste Inbetriebnahme	23
	6.2 Touchscreen	24
	6.3 Navigation auf dem Bildschirm	24
	6.4 Bildschirmschoner	25
7.	Betrieb des Systems	26
	7.1 Ansaugung einer Magnetschwebepumpe	26
	7.1.1 Einrichtung des Pumpenpriming	26
	7.1.2 Ansaugvorgang der Pumpe	27
	7.2 KrosFlo [®] TFDF [®] -Verfahren	29
	7.3 Informationen zu Proben und Verfahren	31
8.	Übersicht über die Systembildschirme und Funktionen	
	8.1 Informationsbildschirm	33
	8.2 Hauptmenü-Bildschirm	33
	8.3 Admin-Bildschirm	34
	8.3.1 Ändern der Standard-Kalibrierungsfaktoren für Rohrleitungen	35
	8.3.2 Ändern der Seriennummer des Systems	35
	8.3.3 Aktualisierung des Installationsstatus des Permeatdurchflussmessers	36
	8.4 Bildschirm "Systemeinstellungen"	36
	8.4.1 Einstellung der Schlauchgrößen	36
	8.4.2 Skalierung	37
	8.4.3 Ändern der Schlauchkalibrierungsfaktoren für einen Lauf (nicht Standard)	37
	8.4.4 Zurücksetzen von Schlauchkalibrierungsfaktoren	37
	8.4.5 Einstellung der maximalen Drehzahl der magnetisch schwebenden Umwälz-	
	/Einspeisungspumpe (P-01)	39
	8.4.6 Einstellung der Druckeinheiten	39
	8.4.7 Einstellung des permeatseitigen Hold-up-Volumens	39
	8.5 Einstellungen der PID-Schleife	
	8.6 Alarme	41
	8.6.1 Alarm Einrichtungsbildschirm	41
	8.6.2 Alarm Verlauf	43
	8.7 Bildschirm sperren	43

	8.8 Date	naufzeichnung (Data Log)	44
	8.8.1	Experimentelle Daten	45
	8.9 Syste	emmodus	46
	8.10 Konz	entration, Konzeption/Diafiltration und Konzeption/Diafiltration/Konzent	rationsmodi
	47		
	8.10.1	Bildschirm Sollwerte ausführen	47
	8.10.2	Übersichtsbildschirm	50
	8.11 Assis	tent Funktion	53
	8.12 Man	ual-Modus	56
	8.12.1	Instrumentierung	57
	8.12.2	Tarierung	58
	8.13 Ausw	vahl eines Filtermoduls	59
	8.14 Bilds	chirme mit Diagrammen	62
	8.14.1	Drehzahl der Pumpe	64
	8.14.2	Druck/Durchfluss	65
	8.14.3	Gewichte	66
	8.14.4	Daten	67
	8.14.5	PID	68
9.	Fehlersuc	he	69
10.	Wartung.		70
11.	Allgemein	ne Informationen	70
	11.1 Siche	erheit Leitlinien	70
	11.2 Syste	emspezifikationen	71
	11.3 Syste	emkomponenten	73
12.	Index		74

Liste der Tabellen

Tabelle 1.	Erläuterung der Begriffe für die Aufmerksamkeit der Nutzer	9
Tabelle 2.	Erläuterung der Symbole	9
Tabelle 3.	Sicherheitsetiketten für Geräte	
Tabelle 4.	Spezifikationen des ProConnex [®] TFDF [®] Flow Path	
Tabelle 5.	Stichprobe und Prozess	
Tabelle 6.	Durchflussraten der Permeatschläuche des KrosFlo® TFDF®Lab Systems	
Tabelle 7.	Parameterdaten	63
Tabelle 8.	Warnung: Beschränkung der Produktverwendung	71
Tabelle 9.	Systemausgabe	71
Tabelle 10.	Systemeingabe	71
Tabelle 11.	Systemaufbau	72
Tabelle 12.	Systemumgebung	72
Tabelle 13.	Systemkomponenten Liste	73

Liste der Abbildungen

Abbildung 1.	KrosFlo [®] TFDF [®] Lab System	8
Abbildung 2.	Komponenten des KrosFlo® TFDF®Lab Systems	11
Abbildung 3.	Regler	11
Abbildung 4.	Pumpstation	12
Abbildung 5.	ProConnex® TFDF®Flow Path	13
Abbildung 6.	Benötigter Arbeitsbereich	14
Abbildung 7.	Anordnung des Systems auf der Bank	14
Abbildung 8.	Zusammenbau des Ständers	15
Abbildung 9.	Systemverbindungen	16
Abbildung 10.	ProConnex® TFDF®Flow Path Konfiguration	17
Abbildung 11.	Anschließen von Drucksensoren	21
Abbildung 12.	Herstellen von Schlauchverbindungen	22
Abbildung 13.	Touchscreen-Anzeige	23
Abbildung 14.	Hauptmenü-Bildschirm	24
Abbildung 15.	Menüleiste	24
Abbildung 16.	Bildschirmnavigation	25
Abbildung 17.	Einrichtung vor dem Primung	26
Abbildung 18.	Primiertes System	28
Abbildung 19.	Experimenteller Workflow	32
Abbildung 20.	Informationsbildschirm	33
Abbildung 21.	Hauptmenü-Bildschirm	34
Abbildung 22.	Verwaltungsbildschirm	35
Abbildung 23.	Bildschirm "Systemeinstellungen"	36
Abbildung 24.	Zurücksetzen der Rohrkalibrierung	38
Abbildung 25.	Bildschirm "PID-Schleifeneinstellungen"	40
Abbildung 26.	Alarm Einrichtungsbildschirm	41
Abbildung 27.	Alarm Reset-Taste	42
Abbildung 28.	Alarm Verlaufsbildschirm	43
Abbildung 29.	Meldung auf dem Sperrbildschirm	43
Abbildung 30.	Sperrbildschirm	44
Abbildung 31.	Bildschirm zur Datenaufzeichnung	44
Abbildung 32.	Datenprotokolldateien	45
Abbildung 33.	Beispiel für aufgezeichnete Daten	46
Abbildung 34.	Bildschirm Systemmodus	46
Abbildung 35.	Bildschirm "Konzentrationsmodus: Sollwerte ausführen"	47
Abbildung 36.	Bildschirm "Konzentration/Diafiltration Modus Sollwerte ausführen"	48
Abbildung 37.	Konzentration/Diafiltration/Bildschirm Konzentrationsmodus Sollwerte ausführen	49
Abbildung 38.	Bildschirm "Konzentrationsmodus: Sollwerte ausführen	51
Abbildung 39.	Konzentration/Diafiltration Bildschirm "Modusübersicht"	52
Abbildung 40.	Konzentration/Diafiltration Bildschirm Konzentrationsmodusübersicht	53

Starten der Assistenten Funktion	54
Startbildschirm	54
Startassistent Funktionsbildschirm	55
Berechnung in Bearbeitung	55
Übersichtsbildschirm des manuellen Modus	56
Aufforderung zum Zurücksetzen	57
Übersichtsbildschirm des manuellen Modus	58
Bildschirm "Sollwerte im manuellen Modus auswerten"	59
Filtereinstellungen	59
Filterlistenbildschirm (links)	60
Navigationsmenü	60
Bildschirm "Filterliste" (rechte Seite)	61
Bildschirm darstellen	62
Darstellung der Pumpendrehzahl	64
Druck-/Flussdiagramm	65
Gewichtungsdiagramm	66
Datendiagramm	67
PID-Diagramm	68
Achtung und Warnung vor magnetischen Kräften	70
	Starten der Assistenten Funktion Startbildschirm Startassistent Funktionsbildschirm Berechnung in Bearbeitung Übersichtsbildschirm des manuellen Modus Aufforderung zum Zurücksetzen Übersichtsbildschirm des manuellen Modus Bildschirm "Sollwerte im manuellen Modus auswerten" Filtereinstellungen Filtereinstellungen Filterlistenbildschirm (links) Navigationsmenü Bildschirm "Filterliste" (rechte Seite) Bildschirm darstellen Darstellung der Pumpendrehzahl Druck-/Flussdiagramm Gewichtungsdiagramm PID-Diagramm Achtung und Warnung vor magnetischen Kräften

Abkürzungen

AC	Wechselstrom
CE	Konformitätserklärung für Europa
С	Konzentration
D	Diafiltration
DV	Diafiltration Volumen
CF	Concentration Factor – Konzentrationsfaktor
cm	Zentimeter
FAS	Field Application Scientist (Feldanwendungsexperte)
Hz	Hertz
in	Zoll
kg	Kilogramm
lbs	Pfund
LMH	Liter/Meter ² /Stunde
lpm	Liter pro Minute
PCV	Prozentuales Zellvolumen
PE	Drucksensor
PID	Proportional, Integral und Derivativ
psi	Pounds per square inch – Pfund pro Quadratzoll
PV	Prozessvariable
rpm	Wiederholungen pro Minute
SP	Gewünschter Sollwert
TFDF	Tangentialfluss-Tiefenfiltration
ТМР	Transmembrandruck
UL	Underwriters Laboratories
VT	Volumetrischer Durchsatz

1. Einleitung

Das KrosFlo® TFDF®Lab System bietet eine Komplettlösung für die Separation von Zellen aus Medien während Zellkulturprozessen. Die Technologie kombiniert Hardware, Software und einen einheitlichen Filter, um das Filterergebnis zu erzielen. Fragen zu spezifischen Anwendungen der Technologie richten Sie bitte an Ihren regionalen Vertriebsmitarbeiter oder Anwendungswissenschaftler vor Ort.

Dieses Benutzerhandbuch ist ein Referenzdokument für Ihr KrosFlo® TFDF®Lab System und wird regelmäßig aktualisiert. Die neueste Version des Dokuments finden Sie unter <u>www.repligen.com/resources</u>. Es wird dringend empfohlen, dass der Installationsprozess von einem geschulten Repligen-Techniker durchgeführt wird. Für weitere Unterstützung bei der Fehlersuche oder Prozessoptimierung wenden Sie sich bitte an Ihren lokalen Repligen Field Application Scientist.

2. Willkommen

Vielen Dank, dass Sie sich für das KrosFlo[®] TFDF[®]Lab System für Ihr Labor entschieden haben. Dieses innovative KrosFlo[®] TFDF[®]-Laborsystem bietet eine umfassende Lösung für die Trennung von Zellen von Medien während der Zellenkultur mit überragender Flussleistung, Skalierbarkeit und Benutzerfreundlichkeit.

Abbildung 1. KrosFlo® TFDF®Lab System

3. Über dieses Dokument

In diesem Handbuch werden mehrere Hinweise für den Benutzer gegeben. Jeder Satz sollte die folgende Aufmerksamkeit auf sich ziehen:

Tabelle 1. Ellauterung der Degriffe für die Aufmerksamken der Nutze	Tabelle 1.	Erläuterung	der Begriffe	für die /	Aufmerksamke	it der Nutzer
---	------------	-------------	--------------	-----------	--------------	---------------

Satz	Beschreibung
Anmerkung:	weist auf nützliche Informationen hin
WICHTIG	Zeigt Informationen an, die für den ordnungsgemäßen Betrieb des Geräts erforderlich sind.
VORSICHT	Warnt Benutzer vor potenziell gefährlichen Situationen in Bezug auf Verletzungen oder Schäden am Gerät, wenn die Informationen nicht erfasst und befolgt werden
WARNUNG!	Warnt davor, dass es zu schweren Verletzungen kommen kann, wenn die Warnhinweise Vorsichtsmaßnahmen nicht beachtet werden.

4. Sicherheits vorkehrungen

Tabelle 2	Erläuterung	der Symbole
-----------	-------------	-------------

Symbol		Beschreibung
Vorsicht	Â	Gefahrenquelle. Art der Gefahr und Abhilfemaßnahmen in der Betriebsanleitung nachlesen. Möglicherweise gefährliche Situation, die, wenn sie nicht vermieden wird, zu Sachschäden führen kann
Vorsicht		Gefahr der Quetschung. Halten Sie die Finger vom Rotor fern, wenn die Pumpe in Betrieb ist. Stoppen Sie die Pumpe vor dem Be- und Entladen der Schläuche
Vorsicht		Heiße Oberfläche. Nicht berühren
Vorsicht	Â	Gefahr eines elektrischen Schlages, siehe Betriebsanleitung für die Art der Gefahr und Abhilfemaßnahmen
Sicherheit Alarmsym bol		Gefährdung von Personen ist vorhanden, die SAS entfällt, wenn die Gefährdung nur Sachschäden betrifft
Gefahr		Unmittelbar gefährliche Situation, die, wenn sie nicht vermieden wird, zum Tod oder zu schweren Verletzungen führen wird
Warnung	A WARNING	Achten Sie bei der Handhabung des magnetisch schwebenden Kreiselpumpenkopfes auf die Magnetkräfte. Vermeiden Sie andere Magnete oder Metallteile als Verunreinigungen durch physische Schäden oder Risse, die sich aus der magnetischen Anziehungskraft ergeben können. Achten Sie beim gleichzeitigen Umgang mit zwei Pumpenköpfen besonders auf die magnetischen Kräfte.

Tabelle 3. Sicherheitsetiketten für Geräte

Symbol	Beschreibung
Gefahr	Es liegen hohe Spannungen an und sind zugänglich. Seien Sie bei der Wartung interner Komponenten äußerst vorsichtig.Trennen Sie die Pumpe von der Stromversorgung, bevor Sie mit den Reinigungsarbeiten beginne.
Warnung	Trennen Sie die Pumpe von der Stromversorgung, bevor Sie Wartungsarbeiten durchführen.
Warnungen	Ein Schlauchbruch kann dazu führen, dass Flüssigkeit aus der Pumpe gespritzt wird. Geeignete Maßnahmen zum Schutz von Bediener und Gerät ergreifen
	Schalten Sie den Antrieb aus, bevor Sie Schläuche entfernen oder einbauen.
Vorsichtsmaßnahmen	Vor dem Anschließen des externen Fernbedienungskabels muss die Stromversorgung ausgeschaltet werden, um Schäden am Antrieb zu vermeiden.
	Verunreinigen Sie das Schmiermittel im Behälter, auf dem Schaft oder auf der Dichtung nicht mit Fremdmaterial. Die Nichtbeachtung dieser Vorsichtsmaßnahme kann zu Schäden an der Dichtung und vorzeitigem Versagen der Dichtung führen.
	Unter der Dichtung auf der Rückseite der Frontplatte oder unter den Schraubenköpfen darf kein Fremdkörper zugelassen werden. Bei Nichtbeachtung dieser Vorsichtsmaßnahmen kann es zu Leckagen beim Abwaschen des Antriebs kommen.
Vorsicht	Um einen elektrischen Schlag zu vermeiden, muss der Schutzleiter des Netzkabels mit der Erde verbunden sein. Nicht für den Betrieb in Feuchträumen geeignet gemäß EN61010-1
Warnung	Hohe Magnetfeldstärke des Laufrads
	Der magnetische Hebepumpenkopf enthält einen Rotor mit einem seltenen Erdmagneten mit hoher Feldstärke. Pacemakers können beeinflusst werden, und magnetische Kräfte können zu Zwischenfällen führen. Halten Sie Abstand zwischen Pumpe und Pacemaker und behandeln Sie die Pumpenköpfe mit Vorsicht
Vorsicht	Achten Sie bei der Handhabung des Magnetschwebepumpenkopfes auf die Magnetkräfte. Vermeiden Sie andere Magnete oder Metallteile als Verunreinigungen durch physische Schäden oder Risse, die sich aus der magnetischen Anziehungskraft ergeben können. Achten Sie besonders auf die Magnetkräfte, wenn Sie zwei Pumpenköpfe gleichzeitig handhaben
Vorsicht	Halten Sie die Finger vom Rotor fern, wenn die Pumpe in Betrieb ist. Stoppen Sie die Pumpe vor dem Be- und Entladen der Schläuche

Abbildung 2. Komponenten des KrosFlo® TFDF®Lab Systems

4.1 Steuergerät

Benutzer ändern Parameter und überwachen Prozesse über die Schnittstelle des Controllers. Ein 12-Zoll-Touchscreen ermöglicht Benutzereingaben, wie z. B. eine Änderung der Pumpendrehzahl, und zeigt ein Diagramm des Systems zur visuellen Analyse an. Der Wizard in der KrosFlo[®] TFDF[®]Software unterstützt die Durchführung eines optimalen Prozesses. Auf der Grundlage einiger weniger Benutzereingaben generiert die KrosFlo[®] Wizard-Funktion Laufparameter für einen einfachen und genauen Betrieb.

1. 12"-Touchscreen-Schnittstelle

2. Systemsteuerung

4.2 Pumpstation

Die Pumpenstation überträgt alle Flüssigkeiten während des TFDF[®]-Prozesses. Eine geringe Schere und eine digital regulierende magnetische Pumpe im Zentrifugalstil liefern den Fiedbestand vom Bioreaktor vertikal durch das Lumen des TFDF[®]-Filters und dann wieder in den Bioreaktor. Die peristaltische Permeat-Pumpe (oben) überträgt das Material vom Filtergehäuse zum permeatem Reservoir. Die Diafiltration/Aux-Pumpe (unten) überträgt den Puffer während der Diafiltrationsphase von einem Diafilterreservoir an den Bioreaktor. Der Gesamtprozess wird mit mehreren Sensoren überwacht:

- Drei Inline-Einweg-Drucksensoren für Zulauf, Permeat und Retentat
- Ein nicht-invasives, klemmbares Ultraschallmessgerät mit retentärem Durchfluss

Zu den optionalen Sensoren (separat vom System zu erwerben) gehören:

- Ein Inline-Drucksensor für den einmaligen Gebrauch für einen Sekundärfilter
- Ein einzeiliger Einzelnutzungsdrucksensor für einen Schutzfilter/Sterilienfilter
- Ein Inline-Trübungsmessgerät

Abbildung 4. Pumpstation

- 1. Pumpstation
- 2. Peristaltische Permeatpumpe
- 3. Diafiltration/Aux-Peristaltikpumpe
- 4. Magnetschwebepumpe
- 5. Stativhalterung
- 6. Durchflussmesser
- 7. Bedienfeld

- 8. Schlauchführungsstange
- 9. Verlängerungsstange
- 10. Hülse
- 11. Filterklammer

4.3 TFDF[®]-Filter

Der TFDF[®]Filter ist ein Rohrtiefenfilter, der in der Prozessentwicklung für Pilot- und Produktionsskalen erhältlich ist. Der Filter funktioniert in einem Gehäuse mit Anschlüssen, die Feed-Bestände liefern und rückstandsfrei und durchsichtig entfernen. Alle Filtergrößen, die größer als die Testgröße sind, sind nur als ProConnex[®] TFDF[®]Flow Path erhältlich, die aus einer Bibliothek von Komponenten konfiguriert werden können. Jeder ProConnex[®] TFDF[®]Flow Path wird als vollständig geschlossenes, gereiztes Gerät geliefert, das sofort einsatzbereit ist. Es ist kein Abspülen des Filters erforderlich.

Abbildung 5. ProConnex[®] TFDF[®]Flow Path

- 1. CPC AseptiQuik® geschlechtsneutraler aseptischer Stecker
- 2. Retentat-Schlauch
- 3. Retentat-Drucksensor (PE02)
- 4. Anschluss der Entlüftung
- 5. Klemme zum Einklemmen
- 6. TFDF[®]-Filter-Gehäuse
- 7. Permeat-Drucksensor (PE03)
- 8. Einspeisungsdrucksensor (PE01)
- 9. MCPC AseptiQuik® aseptischer Schleifverbinder
- 10. Magnetischer Pumpenkopf
- 11. Ferromagnetische Fixierscheibe

5. Einrichtung

5.1 Platzanforderungen

5.2 Systemanordnung

ACHTUNG! Das Gewicht des Steuergeräts beträgt 36 lbs. Es wird empfohlen, das Steuergerät mit zwei Personen aus dem Karton zu heben und es auf die Oberseite

5.3 Montage des Ständers

Abbildung 8. Zusammenbau des Ständers

- 5. Schlauchführungsstange
- Erweiterungsstange (nur erforderlich f
 ür 108 cm Strömungsweg)
- 7. Filterklammer
- 8. Hülse

5.4 Systemkabelverbindungen

Abbildung 9. Systemverbindungen

HINWEIS: Achten Sie besonders auf die korrekte Ausrichtung der Steckkontakte an der Buchse. Die Steckkontakte des Kommunikationskabels sind empfindlich.

5.4.1 Optionale Verbindungen

i

- 1. Schließen Sie das **718 Minifast Trübungssensorkabel** von der Pumpstation an Ihren Trübungssensor an.
- 2. Verbinden Sie das längere **M12 Eurofast Tiefenstations-Durchflussmesserkabel** von der Pumpstation mit Ihrer Tiefenstation.

5.5 ProConnex® TFDF®Flow Path

Tabelle 4. Spezifikationen des ProConnex® TFDF®Flow Path

Тур	Filter	Flow Path	Flow Path	Flow Path	Flow Path
Oberfläche (cm ²)	3	3	150	1500	6000
Empfohlenes Prozessvolumen	<1L	< 1 L	< 50 L	< 500 L	< 2000 L
Länge des Filters (cm)	20	20	108	108	108
Tatsächliche Länge (cm)	2.2	2.2	108	108	108
Anzahl der Rohre	1	1	1	10	40

Abbildung 10. ProConnex® TFDF®Flow Path Konfiguration

- «(]=

Beispiel für den ProConnex[®] TFDF[®]flow path mit Filter, Filtergehäuse, Schlauch, Klemmen, Drucksensoren, Magnetpumpenkopf, Entlüftungsfilter und genderlosen AseptiQuik[®]-Anschlüssen. Die Konfigurationen können je nach Ihren Anforderungen variieren.

- 1. CPC AseptiQuik[®] geschlechtsneutraler aseptischer Stecker
- 2. Retentat-Schlauch
- 3. Retentat-Drucksensor (PE02)
- 4. Anschluss der Entlüftung
- 5. Klemme zum Einklemmen
- 6. TFDF[®]Filtergehäuse
- 7. Permeat-Drucksensor (PE03)
- 8. Einspeisungs-Drucksensor (PE01)
- 9. CPC AseptiQuik[®] geschlechtsneutraler aseptischer Stecker
- 10. Magnetischer Pumpenkopf
- 11. Ferromagnetische Fixierscheibe

5.6 Flow Path installieren

Hinweis: Entfernen Sie die ferromagnetische Scheibe, bevor Sie mit dem nächsten Schritt fortfahren.

5.6.1 20 cm Flow Path-Installation

Ausrichten Pumpenkopf.

Ziehen Sie den Verriegelungsstift und Iegen Sie den Pumpenkopf ein.

Filter nach oben drehen (Sicherungsstift klickt).

5.6.2 108 cm Flow Path-Installation

Übertragen Sie die Rohrführungsstange auf die Verlängerungsstange und heben Sie die Hülse auf die maximale Höhe an. Übertragen Sie die Verlängerungsstange (mit Rohrführungsstange) auf die Muffe und drehen Sie die Klemme so, dass sie bei der Installation nicht im Weg ist.

Retentat-Drucksensor

mit RJ12-Verlängerung an PEO2 anschließen Dieser lässt sich aufgrund seiner Höhe viel einfacher anschließen, bevor der Flow Path installiert ist.

(i

Hinweis: RJ45-Kabel sind nicht im Lieferumfang der ProConnex[®] Baugruppen enthalten und müssen separat erworben werden.

Hinweis: Verlängerung steht über Repligen Support zur Verfügung.

Ausrichten des Pumpenkopfes

Ziehen Sie am Sicherungsstift und setzen Sie den Pumpenkopf ein

Drehen Sie den Filter nach oben bis der Sicherungsstift klickt.

7. Sichern Sie den Flow Path (Fließweg) mit einer Klemme und heben Sie die Verlängerungsstange so an, dass sich die Führungsstange auf Höhe des Retentatschlauches befindet. Nehmen Sie gegebenenfalls letzte Anpassungen vor.

5.7 Drucksensor im Flow Path (Fließweg) und Schlauchanschlüsse

5.7.1 Anschlüsse für Drucksensoren im Fließweg

Drucksensoren anschließen:

- PE01 bis Einspeisung
- PE02 bis Retentat (für 108 cm Flow Path: bereits in Installationsschritt 3 angeschlossen)
- PE03 bis Permeat
- **PE04** bis Sekundärfilter (OPTIONAL)
- **PE05** bis Schutz-/Sterilfilter (OPTIONAL)
- PE06 NICHT VERWENDET

Schließen Sie den Inline-Trübungssensor an die Permeatleitung an (OPTIONAL).

(i)

Hinweis: Inline-Turbidity-Sensorkabel sind nicht im Lieferumfang des Systems enthalten und müssen separat erworben werden.

5.7.2 Schlauchverbindungen

Abbildung 12. Herstellen von Schlauchverbindungen

Herstellen von Schlauchverbindungen:

- 1. Strecke **Retentat-Schläuche** über **Schlauchführung** (Ständeranpassungen können erforderlich sein).
- 2. Permeat -schlauch durch obere peristaltische Pumpe verlegen.
- 3. Diafiltrations- pufferschlauch durch untere peristaltische Pumpe führen.
- 4. Einspeisungsleitung nicht installiert im Durchflussmesser (ermöglicht leichteres Priming).

6. Erste Schritte

6.1 Erste Inbetriebnahme

Schalten Sie das KrosFlo[®] TFDF[®]Lab System über den Netzschalter auf der linken Rückwand des Hauptgehäuses ein. Sobald das System hochgefahren ist, wird der unten abgebildete Informationsbildschirm angezeigt. Berühren Sie den Bildschirm, um fortzufahren.

Abbildung 13. Touchscreen-Anzeige

6.2 Touchscreen

Die Steuerung und Bedienung des KrosFlo[®] TFDF[®]Lab Systems erfolgt über den Touchscreen. Nach dem ersten Systemstart wird der Bildschirm mit dem Hauptmenü angezeigt:

ALARMS	PAUSE	PAUSE Main Menu		Lock	STOP SYSTEM	11:42:10 10-JAN-20
						INFORMATION SCREEN ADMIN SCREEN
		OVERV	/IEW			
	М	DDE RU	N	PLOTS		
	SY: SET	STEM ALAF TINGS SETU	RM UP	PID SETUP		
					_	
MAIN						
MENU	ERVIEW DATA L	OG				

Abbildung 14. Hauptmenü-Bildschirm

Die Tasten auf dem Hauptmenü-Bildschirm bieten Zugriff auf verschiedene Betriebs- und Einrichtungsbildschirme. Um zu einem anderen Bildschirm zu navigieren, berühren Sie einfach die Taste.

6.3 Navigation auf dem Bildschirm

Die Menüleiste wird am oberen Rand aller Systembildschirme angezeigt.

Abbildung 15. Menüleiste

Die Optionen zur Bildschirmnavigation werden am unteren Rand aller Systembildschirme angezeigt. Die angezeigten Optionen variieren von Bildschirm zu Bildschirm.

Abbildung 16. Bildschirmnavigation

6.4 Bildschirmschoner

Das System ist mit einem Bildschirmschoner programmiert, der sich nach 30 Minuten Inaktivität einschaltet. Der Betrieb wird dadurch in keiner Weise beeinträchtigt. Wenn der Bildschirmschoner aktiv ist, ist das Display schwarz. Berühren Sie einfach den Bildschirm, um den aktiven Systembildschirm anzuzeigen.

7. Betrieb des Systems

7.1 Ansaugung einer Magnetschwebepumpe

Das Entlüften der Magnetschwebepumpe ist **bei von oben beschickten Bioreaktoren** notwendig, weil eine externe Kraft erforderlich ist, um die Flüssigkeit nach oben und aus dem Bioreaktor durch die Schläuche in die Magnetschwebepumpe zu ziehen. Bei Bioreaktoren, die von unten beschickt werden, ist in der Regel keine Entlüftung erforderlich.

7.1.1 Einrichtung des Pumpenpriming

Abbildung 17. Einrichtung vor dem Primung

Überprüfen Sie vor dem Pumpenprimung, dass die folgenden Schritte ausgeführt wurden:

- Einspeisungsdrucksensor verbunden mit PE01
- Retentatdrucksensor verbunden mit PE02
- Permeatdrucksensor verbunden mit PE03
- Entlüftungsleitung geklemmt geschlossen
- Retentatleitung geklemmt geschlossen
- Einspeisungsleitung nicht installiert im Durchflussmesser
- Permeatleitung geführt durch obere Peristaltikpumpe

7.1.2 Ansaugvorgang der Pumpe

- 1. Drücken Sie **Handbuch** drücken Sie **Übersicht**
- 2. Umschalten der Permeatpumpe P-02 auf **FWD**

 Wählen Sie peristaltische Schlauchgröße Beispiel mit der Nummer 13 Drücken Sie auf Übersicht

5. Eingabe **Durchflusswert** in mL/min Drücken Sie auf **ENT**

Taste zeigt grün Drücken Sie auf **Systemeinstellungen**

4. Auf Permeatpumpe drücken P-02 Durchflussmenge

6. Drücken Sie P-02 **Start** *Prozessgrafik blinkt grün*

 Die Permeat-Peristaltikpumpe P-02 schaltet sich ein. Flüssigkeit fließt aus dem Bioreaktor in die Einspeisungsleitung und die Pumpenkammer. Stoppen Sie die peristaltische Permeatpumpe P-02, wenn im Einspeisungsdrucksensor über der Pumpenkammer Flüssigkeit zu sehen ist.

WICHTIG Es ist wichtig, dass während des Ansaugens keine Flüssigkeit in das TFDF[®] Filterelement gelangt.

- 8. Öffnen Sie die Klemme an der Retentatleitung.
- 9. Legen Sie die Einspeisungsleitung durch den Durchflussmesser.

Das Priming ist abgeschlossen.

Abbildung 18. Primiertes System

7.2 KrosFlo® TFDF®-Verfahren

Das typische KrosFlo[®] TFDF[®]-Experiment ist ein dreistufiger Prozess, der aus einem Absaugschritt, einem Waschschritt und einem abschließenden zweiten Absaugschritt besteht.

Einrichtung: Bei der Einrichtung beginnt die Zellkultur-Einspeisung im Bioreaktor (blau). Der permeate Reservoir ist leer und der Pufferspeicher (lila) enthält ein Volumen von ca. **50 %** des Zellkultur-Einspeisungsvolumens.

Schritt 1, nach unten ziehen: Der

Zellkultureinspeisungsbestand wird vom

Bioreactor durch das Lumen des TFDF®-

Filters gepumpt. Der Retentat aus dem Filter (blau) zirkuliert zurück zum Bioreaktor, während er vom Filter (rot) zum permeierten Reservoir (rot) geleitet wird, wobei die permeate peristaltische Pumpe im Uhrzeigersinn betätigt wird. Ende Schritt 1 wurde etwa **50 %** des ursprünglichen Zellkulturvolumens in den permeierten Reservoir übertragen und die Zellkultureinspeisung wurde effektiv

3-Step Automated Process Step 1: Draw Down Step 2: Wash Step 3: Draw Down

Schritt 2, Waschen:

konzentriert.

Diafiltration/Waschpuffer (lila) wird in den Bioreaktor gepumpt, während die Durchblutung des Zellkultur-Einspeisungsbestands fortgesetzt wird. Permeat sammelt sich weiterhin im permeaten Reservoir. Ende Schritt 2 erreicht das permeate Reservoir Volumen etwa **100 %** des anfänglichen Zellkulturvolumens. TMP dürfte leicht

Schritt 3, nach unten ziehen: Die Einführung des Waschbeckens wird eingestellt und das Zellkulturfutter zirkuliert weiter durch den Filter mit rückläufiger Rückkehr zum Bioreaktor und permeiert den Stausee. Zum Ende von Schritt 3 wurde die Erläuterung des anfänglichen Bioreaktor-Einspeisungsbestands abgeschlossen und das permeate Reservoir erreichte ca. 110 - 120 % des anfänglichen Zellkultur-Einspeisungsvolumens.

Fertigstellung: Messen Sie die Trübung und die Produktkonzentration im Permeatbehälter, um die Trübungsreduktion und den Ertrag zu berechnen. Trennen Sie den Permeatbehälter ab und lagern Sie ihn für den nächsten Einsatz. Entsorgen Sie den Filter und den Durchflussweg entsprechend Ihren internen Anforderungen.

7.3 Informationen zu Proben und Verfahren

Tabelle 5. Stichprobe und Prozess

Parameter	Assistentenfunktion Anforderung	Beschreibung	
Prozentuales Zellvolumen (%PCV)	✓	 Werte ~>20 % können eine erweiterte Diafiltration oder eine anfängliche Verdünnung der Einspeisung mit Puffer/Medien erfordern. Maximalwert ~35 - 40 % 	
Starting Volume	\checkmark	 Volumenrepräsentant für skalierten/skalierbaren Prozess auswählen 	
Filterfläche		 Wählen Sie eine Größe, die repräsentativ für den skalierten/skalierbaren Prozess ist 	
Zelldichte		 Geringe Auswirkungen auf die Permeatqualität, wenn die Durchlässigkeit > 75% ist Steigerung der Signifikanz bei geringeren Wahrscheinlichkeiten 	
Prozentuale Lebensfähigkeit		 < 75 % können die Trübung erhöhen < 75% können eine erhöhte Diafiltration erfordern 	
Einspeisungsbestand Trübung		 Kritische Messung für anfängliches Einspeisungs-Merkmal Zur Bestimmung der TFDF[®]-Trübungsminderung 	
Querströmungsrate	\checkmark	Festgelegter Wert bei 2L/min/Faser	
Zielertrag	\checkmark	 In der Regel 90 - 95% Das Targeting höherer Erträge kann die Trübung erhöhen Höhere Erträge können den Bedarf an Diafiltrationspuffer erhöhen 	
Maximales abschließendes Poolvolumen	✓	 In der Regel 110 - 120 % des Ausgangsvolumens der Zellkulturzufuhr Eine Erhöhung kann den Ertrag bei schwierigen Proben erhöhen 	
Anfänglicher Konzentrations faktor	V	 Mehrfache Konzentration der Ausgangszellkultur-Einspeisung Normalerweise 2x, wenn %PCV < 15% Verringerung kann den Ertrag oder den Durchbruch bei schwierigen Proben verbessern 	
Maximale Zeit		 Maximal zulässige Prozesszeit In der Regel durch den Assistenten berechnet Funktion oder automatischer Modus 	
Permeat-Flussrate		 650 LMH empfohlener Standardwert Kann basierend auf bestimmten Einspeisungsigenschaften optimiert werden > 650 LMH möglich mit hoher Viabilität und niedrigem %PCV 	
Diafiltration Puffervolumen		 Volumen der Diafiltrationspufferwäsche in Litern Durch die Erhöhung des Volumens kann Fouling reduziert und der Ertrag bei herausfordernden Proben erhöht werden 	

Abbildung 19. Experimenteller Workflow

Das Ausführen eines KrosFlo[®] TFDF[®]-Experiments wird vom Assistenten einfach gemacht. Geben Sie nur 5 Eingaben ein, um automatisch Ausführungsparameter zu generieren:

- %PCV
- Max. Poolvolumen
- Zielertrag
- Starting Volume
- Anfangskonzentrations faktor

Der wichtigste Versuchsparameter ist in der Regel der %PCV. Zwar haben alle Proben ihre eigenen Eigenschaften, doch im Allgemeinen können Proben mit einem %PCV-Wert unter 25 % direkt getestet werden. Proben mit einem %PCV > 25 erfordern entweder eine frühzeitige Diafiltration oder eine anfängliche Verdünnung des Ausgangsmaterials in Puffer oder Medien. Die meisten Proben erfüllen die Erwartungen hinsichtlich Wiederfindung und Trübungsreduzierung mit den vom Assistenten-Feature abgeleiteten Parametern und ohne Optimierung. Wird ein Trübungsdurchbruch beobachtet, wird empfohlen, die volumetrische Expansion um 5 - 10 % zu erhöhen und den Faktor der Anfangskonzentration zu verringern. Wenn Filterverschmutzung vorliegt, wird empfohlen, die %PCV-Messung zu überprüfen. Bestätigt sich, dass der %PCV-Wert < 25 % ist, sollte eine Reduzierung der Durchflussrate in Betracht gezogen werden. Liegt der %PCV-Wert über 25 %, sind Versuche mit einer frühen Diafiltration oder einer ersten Verdünnung mögliche Schritte zur Verbesserung. Wird eine frühe Diafiltration durchgeführt, sind die empfohlenen Ausgangsparameter der Betrieb im C/D-Modus mit einem Konzentrationsfaktor zwischen 1 und 1,5.

8. Übersicht über die Systembildschirme und Funktionen

8.1 Informationsbildschirm

Nach dem Einschalten des KrosFlo[®] TFDF[®] Lab Systems erscheint der Informationsbildschirm. Er enthält Informationen wie die System-Teilenummer und die Softwareversion.

Abbildung 20. Informationsbildschirm

8.2 Hauptmenü-Bildschirm

Die Schaltflächen im Hauptmenü-Bildschirm bieten Zugriff auf alle Betriebs- und Einrichtungsbildschirme des Systems Um zu einem bestimmten Bildschirm zu navigieren, berühren Sie einfach die entsprechende Schaltfläche.

- Übersicht: Zeigt alle verfügbaren Hilfseingänge (Hilfspumpen, Drucksensoren, Waagen, Durchflussmesser, Trübungsmesser) und ihre aktuellen Werte an; die verfügbaren Optionen auf dem Bildschirm ändern sich je nach gewähltem Automatisierungsmodus
- **Modus:** Ermöglicht dem Benutzer die Auswahl eines Automatisierungsmodus und die Auswahl einer Filterteilnummer
- **Betrieb:** Ermöglicht dem Benutzer die Eingabe von Betriebssollwerten, Parametern und die Verwendung der Assistentenfunktion
- Darstellungen: Zeigt Live-Diagramme und Darstellungen des Experiments
- **Systemeinstellungen:** Ermöglicht dem Benutzer die Einstellung von Druckeinheiten, Kalibrierungsfaktoren und der maximalen Drehzahl der Hauptpumpe
- Alarm-Einrichtung: Ermöglicht es dem Benutzer, hörbare Alarme einzustellen und die Alarmeinstellungen zu stoppen.
- **PID-Einrichtung:** Ermöglicht dem Benutzer das Ändern von PID-Werten für Hauptpumpen und Aux-Pumpen

Abbildung 21. Hauptmenü-Bildschirm

8.3 Admin-Bildschirm

Auf dem Bildschirm "Verwaltung" können Benutzer die Standardfaktoren für die Schlauchkalibrierung anpassen, die Seriennummer des Systems ändern und den Status der Installation des Permeatdurchflussmessers aktualisieren. Um auf diesen Bildschirm zuzugreifen, wählen Sie die Schaltfläche **Admin Screen** im Hauptmenü.

Abbildung 22. Verwaltungsbildschirm

8.3.1 Ändern der Standard-Kalibrierungsfaktoren für Rohrleitungen

Der Kalibrierungsfaktor wandelt Pumpendrehungen in eine volumetrische Durchflussrate um. Standardwerte sind im System enthalten. Werte, die für Ihre Einheit und Ihre Schläuche spezifisch sind, erfordern eine Messvolumenübertragung über einen bestimmten Zeitraum mit einer festgelegten Pumpen-Rpm. Standardwerte können nur auf Administratorebene geändert werden. Um eine Einstellung für einen Rohrkalibrierungsfaktor zu ändern, wählen Sie eines der blauen Felder aus und geben Sie einen neuen Standardwert ein. Wenn Sie den Kalibrierungsfaktor hier festlegen, wird die Standardeinstellung für den Betrieb festgelegt.

Benutzer können die Kalibrierungsfaktoren für Rohre mithilfe der Schaltfläche **Schlauchkalibrierung zurücksetzen** im Bildschirm Systemeinstellungen auf Standardwerte zurücksetzen. Weitere Informationen finden Sie im Abschnitt Bildschirm "Systemeinstellungen".

8.3.2 Ändern der Seriennummer des Systems

Wählen Sie **Seriennummer** und geben Sie die neue System-Seriennummer ein. Sobald die Nummer aktualisiert wurde, wird der neue Wert unter Seriennummer angezeigt.

8.3.3 Aktualisierung des Installationsstatus des Permeatdurchflussmessers

Um den Installationsstatus des Durchflussmessers zu ändern, schalten Sie die Schaltfläche **Permeatdurchflussmesser** zwischen Installiert und NICHT Installiert um.

8.4 Bildschirm "Systemeinstellungen"

Auf dem Bildschirm "Systemeinstellungen" können die Benutzer Druckeinheiten, Schlauchgrößen und Kalibrierungsfaktoren sowie die Kapazität des Produktbehälters und die Pumpengeschwindigkeit einstellen. Um diesen Bildschirm aufzurufen, wählen Sie die Schaltfläche Systemeinstellungen im Hauptmenü.

ALARMS	PAUSE	System Settings	Lock	STOP SYSTEM	08:49:01 14-MAY-20
P-02 Tube Size			P-03 Tube Size		
	Pump (P-02) Calibrati	on Factor	$\overline{(13)}$	Pump (P-03) Calibrati	on Factor
X	#13 Tubing 31.39	I rev/ml	X	#13 Tubing 31.3	9 rev/ml
	#14 Tubing 7.08	i rev/ml		#14 Tubing 7.0	8 rev/ml
	#16 Tubing 2.59	i rev/ml		#16 Tubing 2.5	9 revimi
25	#25 Tubing 1.24	rewimi	25	#25 Tubing 1.2	4 rev/ml
Pump (P-01) Ma 3000 Set Max	oximum Speed Imm	Scalin; Enable	Pressun	e Units	te Side Holdup Volume 0,0ml
MAIN MENU 0	VERVIEW ALAR SETU	M MODE R	UN PLO	DTS	

Abbildung 23. Bildschirm "Systemeinstellungen"

8.4.1 Einstellung der Schlauchgrößen

- 1. Vergewissern Sie sich über die Größe des zu verwendenden Schlauchs, indem Sie die direkt auf dem Schlauch aufgedruckte Größe beachten.
- 2. Wählen Sie eine kreisförmige Schaltfläche unter der Spalte Rohrgröße P-02 oder P-03, um die Größenoptionen anzuzeigen. Die Taste wird grün.
- 3. Die Auswahl der Optionen beginnt automatisch mit Nr. 13 Schläuchen. Wählen Sie die gewünschte Schlauchgröße.

8.4.2 Skalierung

Wählen Sie die Schaltfläche **Skalierung**, um zwischen Skalierung aktiviert und Skalierung deaktiviert umzuschalten.

- Wenn die Skalierung aktiviert ist (grün), werden Kalibrierungsfaktoren angewendet, und der Benutzer kann eine Durchflussrate eingeben
- Wenn die Skalierung deaktiviert ist (rot), kontrolliert das System die Pumpengeschwindigkeit. Der Benutzer kann anstelle einer Durchflussmenge eine Drehzahl eingeben. Benutzer können auch Rohrkalibrierungsfaktoren im Bildschirm "Systemeinstellungen" auswählen und Werte eingeben, die anstelle der Standardwerte verwendet werden sollen

8.4.3 Ändern der Schlauchkalibrierungsfaktoren für einen Lauf (nicht Standard)

- 1. Wählen Sie ein graues Kästchen neben einer Schlauchgröße unter der Pumpe (P-02) oder Pumpe (P-03).
- 2. Wählen Sie eine Durchflussrate/rpm und messen Sie die Leistung auf einer Skala.
- 3. Fügen Sie die rpm/ml-Zahl in das entsprechende Feld für die Kalibrierung ein.

Die folgende Tabelle zeigt die verfügbaren Flussraten für das KrosFlo® TFDF®Lab System.

Tabelle 6. Durchflussraten der Permeatschläuche des KrosFlo® TFDF®Lab Systems

Schlauchgröße	Niedriger Bereich (ml/min)	Hoher Bereich (ml/min)
Nr. 13, 0,76 mm	0	16,3
Nr. 14, 0,89 mm	0	57,0
Nr. 16, 1,52 mm	0	190,0
Nr. 25, 2,79 mm	0	340,0

8.4.4 Zurücksetzen von Schlauchkalibrierungsfaktoren

- 1. Wählen Sie die Schaltfläche Schlauchkalibrierung zurücksetzen zurücksetzen
- 2. Wählen Sie **JA**, um die Kalibrierungsfaktoren für die Schläuche auf die werkseitigen Standardeinstellungen zurückzusetzen.

ALARMS	PAUSE	System Settings	Lock	STOP SYSTE	11:28:17 19-MAY-20
P-02 Tube Size			P-03 Tube Size		
0	Pump (P-02) Calib	oration Factor	\bigcirc	Pump (P-03) Calibr	ation Factor
X	#13 Tubing 3	1.39 rev/ml	X	#13 Tubing 31	1.39 rev/ml
	#14 Tubing	7.08 rev/ml		#14 Tubing	7.08 rev/ml
16	#16 Tubing	2.59 rev/ml	16	#16 Tubing	2.59 rev/ml
25	#25 Tubing	1.24 rev/ml	25	#25 Tubing 1	1.24 rev/ml
		Scaling	Reset Tu to Fac	bing Calibration tory Default ?	
		Enabled	YES	NO	

Abbildung 24. Zurücksetzen der Rohrkalibrierung

(i)

Hinweis: Die Standardeinstellungen für den Schlauchkalibrierungsfaktor können auf dem Verwaltungsbildschirm festgelegt werden.

8.4.5 Einstellung der maximalen Drehzahl der magnetisch schwebenden Umwälz-

/Einspeisungspumpe (P-01)

Wählen Sie das Feld **blau** unter Pumpe (P-01) Maximale Drehzahl und geben Sie einen Wert ein. 2500 U/min wird für die meisten Anwendungen empfohlen.

8.4.6 Einstellung der Druckeinheiten

Wählen Sie das Schaltfeld unter Druckeinheiten, um zwischen psi oder mBar umzuschalten.

8.4.7 Einstellung des permeatseitigen Hold-up-Volumens

Wählen Sie das blaue Feld unter Permeat Side Hold-up Volumen und geben Sie einen Wert ein.

8.5 Einstellungen der PID-Schleife

Das **proportionale -integral-derivative Steuergerät** (**PID-Regler** oder **Dreizeit-Regler**) ist ein Kontrollschleifenmechanismus, der Feedback zwischen der Systempumpe und seinen Sensoren einsetzt. Ein PID-Regler berechnet kontinuierlich einen *Fehlerwert* als Differenz zwischen einem gewünschten Sollwert (SP) und einer gemessenen Prozessvariable (PV) und wendet eine Korrektur auf Grundlage proportionaler, integraler und abgeleiteter Begriffe (d. h. *P*, *I* bzw. *D*) an.

Die Besonderheit des PID-Reglers besteht darin, dass er die drei *Kontrollgrößen* Proportional-, Integral- und Differentialanteil auf den Reglerausgang anwenden kann, um eine genaue und optimale Regelung zu erzielen. Der Regler versucht, die Regelabweichung im Laufe der Zeit zu minimieren, indem er eine *Kontrollgröße*, z. B. die Drehzahl einer Pumpe, auf einen neuen Wert einstellt, der durch eine gewichtete Summe der Kontrollglieder bestimmt wird.

In diesem Modell:

- Der Term P ist proportional zum aktuellen Wert des SP PV Fehlers *e(t)*. Ist die Regelabweichung beispielsweise groß und positiv, wird der Regelausgang unter Berücksichtigung des Verstärkungsfaktors "K" proportional groß und positiv sein. Die Proportionalregelung allein führt zu einer Abweichung zwischen dem Sollwert und dem tatsächlichen Prozesswert, da sie eine Regelabweichung benötigt, um die proportionale Reaktion zu erzeugen. Liegt keine Regelabweichung vor, gibt es auch keine Korrekturreaktion.
- 2. Term I berücksichtigt vergangene Werte des SP-PV-Fehlers und integriert sie über die Zeit, um den Term I zu erzeugen. Wenn z. B. nach Anwendung der Proportionalregelung ein Restfehler SP PV verbleibt, versucht der Integralterm, den Restfehler zu beseitigen, indem er eine Regelwirkung aufgrund des historischen kumulativen Wertes des Fehlers hinzufügt. Wenn der Fehler beseitigt ist, hört der Integralanteil auf zu wachsen. Dies hat zur Folge, dass die proportionale Wirkung mit abnehmender Regelabweichung abnimmt, was jedoch durch die wachsende integrale Wirkung kompensiert wird.
- 3. Term D ist eine bestmögliche Schätzung des künftigen Trends des SP-PV-Fehlers auf der Grundlage seiner aktuellen Änderungsrate. Sie wird manchmal auch als "vorausschauende Kontrolle" bezeichnet, da sie effektiv versucht, die Auswirkungen des SP-PV-Fehlers zu verringern, indem sie einen Kontrolleinfluss ausübt, der durch die Änderungsrate des Fehlers erzeugt wird. Je schneller die Änderung ist, desto größer ist die steuernde oder dämpfende Wirkung.

4. Tuning - Das Gleichgewicht zwischen diesen Effekten wird durch die Abstimmung des Regelkreises erreicht, um die optimale Regelfunktion zu erreichen. Die Abstimmungskonstanten sind unten als "K" dargestellt und müssen für jede Regelungsanwendung abgeleitet werden, da sie von den Reaktionscharakteristiken des gesamten Regelkreises außerhalb des Reglers abhängen. Diese hängen vom Verhalten des Messfühlers, des Stellglieds (z. B. eines Regelventils), von eventuellen Steuersignalverzögerungen und vom Prozess selbst ab. Näherungswerte für Konstanten können in der Regel zunächst eingegeben werden, wenn die Art der Anwendung bekannt ist. Sie werden jedoch normalerweise verfeinert oder abgestimmt, indem der Prozess in der Praxis durch eine Sollwertänderung und die Beobachtung der Systemreaktion "angestoßen" wird.

Um auf diesen Bildschirm zuzugreifen, wählen Sie die Schaltfläche PID-Setup im Hauptmenü.

Werte für proportionale, integrale und/oder derivative Regelkreiseinstellungen können für die Umwälz-/Förderpumpenregelung, die Reaktorvolumenregelung und die Permeatflussregelung hinzugefügt werden. Die Standardwerte sind für eine stabile Regelung optimiert und werden empfohlen. Um Werte hinzuzufügen oder zu ändern, wählen Sie ein blaues Feld und geben Sie einen Wert ein.

Abbildung 25. Bildschirm "PID-Schleifeneinstellungen"

8.6 Alarme

8.6.1 Alarm Einrichtungsbildschirm

Der Alarm-Einrichtungsbildschirm zeigt alle konfigurierbaren Alarme für das KrosFlo[®] TFDF[®]-Lab System an. Diese Alarme dienen dazu, das System und die Benutzer während des Betriebs zu schützen. Um auf diesen Bildschirm zuzugreifen, wählen Sie **Alarme** in der Menüleiste aus.

ALARMS	PAUSE	Alarm Setup	Lock	STOP SYSTEM	12:09:20 10-JAN-20
	Alarm	Warning Setpoint	Warning Enable	Shutdown Setpoint	Shutdown Enable
High Fe	eed Pressure (PE-01) : 0.0 psi	Disabled	0.0 psi	Disabled
High Retent	ate Pressure (PE-02) : 0.0 psi	Disabled	0.0 psi	Disabled
High Perme	ate Pressure (PE-03): O.Opsi	Disabled	0.0 psi	Disabled
Low Perme	ate Pressure (PE-03): O.Opsi	Disabled	0.0psi	Disabled
н	ligh Pressure (PE-04): O.Opsi	Disabled	0.0 psi	Disabled
н	ligh Pressure (PE-05): 0.0psi	Disabled	0.0psi	Disabled
High F	Feed Weight (WE-01): 0.0000kg	Disabled	0.0000kg	Disabled
Low F	Feed Weight (WE-01) ; 0.0000kg	Disabled	0.0000kg	Disabled
High Perm	eate Weight (WE-02): 0.0000kg	Disabled	0.0000kg	Disabled
Low Fe	ed Flow Rate (FL-01): 0.001/min	Disabled	0.00l/min	Disabled
High Permea	ate Flow Rate (FL-02): 0.00ml/min	Disabled	0.00ml/min	Disabled
Low Permea	ate Flow Rate (FL-02): 0.00ml/min	Disabled	0.00ml/min	Disabled
MAIN MENU OV	ERVIEW SYSTE	M MODE	RUN		

Abbildung 26. Alarm Einrichtungsbildschirm

Die folgenden Systemalarme sind verfügbar:

- 1. Hoher Einspeisungsdruck (PE-01): Überwacht, ob der Zufuhrdruck in den Filter aufgrund einer Verstopfung der Fasern im Filter oder der in den Filter führenden Schläuche gestiegen ist. Prüfen Sie auf verbogene Rohre.
- 2. Hoher Retentatdruck (PE-02): Überprüft, ob der Retentatdruck an den Schläuchen, die den Filter verlassen, erhöht ist. Prüfen Sie, ob die Schläuche geknickt sind oder die Leitungen zum Rücklaufbehälter verstopft sind.
- 3. Hoher Permeatdruck (PE-03): Überprüft, ob der Permeatdruck auf der Filtratseite aufgrund einer Verstopfung oder eines verbogenen Schlauchs hoch ist.
- 4. Niedriger Permeatdruck (PE-03): Weist auf einen verschmutzten Filter hin. Beenden Sie den Lauf, wenn er sich in der Nähe des Abschlusses befindet, oder reduzieren Sie den Fluss, um den Lauf abzuschließen.
- 5. Hochdruck (PE-04) Gibt einen verschmutzten sekundären Filter an. Filter austauschen
- 6. Hochdruck (PE-05) Zeigt einen verschmutzten Sekundärfilter an (z. B. den Sterilschutzfilter). Filter austauschen.

- 7. Hohes Einspeisungsgewicht (WIR-01): Wird verwendet, um sicherzustellen, dass das Rücklaufgefäß nicht überfüllt wird.
- 8. Geringes Einspeisungsgewicht (WE-01): Wird verwendet, um sicherzustellen, dass das Rücklaufgefäß nicht trocken ist.
- 9. Hohes Permeat-Gewicht (WE-02) Wird verwendet, um sicherzustellen, dass das permeate Gefäß nicht überfüllt wird.
- 10. Hohe Einspeisungs-Flussrate (FL-01) –Zeigt eine hohe Flussrate an, die Zellen scheren kann.
- 11. Niedrige Durchflussrate (FL-01) Zeigt ein Problem mit niedrigem Durchfluss an, wourch der Filter aufgrund einer unzureichenden Querströmung schnell verschmutzt werden könnte.
- 12. Hohe Permeat-Durchflussrate (FL-02) Zeigt an, dass der Durchfluss zu schnell ist und der Filter verschmutzen könnte.
- 13. Niedrige Permeat-Durchflussrate (FL-02) Zeigt an, dass der Durchfluss zu niedrig ist, was auf einen verschmutzten Filter oder eine Verstopfung in der Permeatleitung hinweisen könnte.

Es gibt zwei Kategorien von Alarmen:

- Warnalarme Diese werden etwa einmal pro Sekunde als blinkende orangefarbene Sternschnuppe angezeigt. Außerdem ertönt ein Piepton, wenn ein Alarmsollwert erreicht wird. Das System läuft weiter, wenn ein Warnalarm ausgelöst wird, zeigt aber einen aktiven Alarm an.
- Abschaltalarme Diese schließen die Sequenz ab, aber nicht das gesamte System. Beispielsweise bleibt die Umwälzungs-/Förderumpe eingeschaltet, die permeierte Pumpe wird gestoppt und die Diafiltrationspumpe wird gestoppt, um die Möglichkeit zur Wiederherstellung des Laufs zu maximieren.

Hochalarme werden ausgelöst, wenn der Prozesswert auf den gespeicherten Sollwert oder darüber ansteigt. Niedrigalarme werden ausgelöst, wenn der Prozesswert auf den gespeicherten Sollwert oder darunter fällt. Das System ist mit einer kurzen Verzögerung ausgestattet, um niedrige Alarme bei den Startbedingungen zu vermeiden.

Um einen Alarmschwellenwert zu ändern, markieren Sie das entsprechende blaue Feld in der Spalte Warn- oder Abschaltsollwert und geben Sie den gewünschten Wert ein. Benutzer können einen Alarm aktivieren oder deaktivieren, indem sie die grauen Schaltflächen **Warnung Aktivieren** oder **Abschaltung Aktivieren** umschalten.

Wenn ein Alarm ausgelöst wird, wird in der unteren rechten Ecke des Systembildschirms eine rot blinkende Schaltfläche Alarm Reset angezeigt, die so lange angezeigt wird, bis das Problem behoben ist. Sie kann gelöscht werden, sobald das System unter den Alarmbedingungen arbeitet. Durch Auswahl der Schaltfläche **Alarm Reset** wird der Alarm zum Schweigen gebracht und die blinkende Schaltfläche zurückgesetzt.

Abbildung 27. Alarm Reset-Taste

8.6.2 Alarm Verlauf

Der Bildschirm Alarm -Verlauf protokolliert einen vollständigen Verlauf aller konfigurierten Alarme, die vom System ausgelöst wurden. Um auf diesen Bildschirm zuzugreifen, wählen Sie **Alarme** in der Menüleiste.

Um die Liste der früheren Alarme zu löschen, wählen Sie Verlauf löschen.

		Aları	m Summary			Tot	al of 4 Alarms	
No	Alarm No	1		M	essage			Activated
1	1	Message-1						19-NOV-19 12:38:00
2	2	Message-2						19-NOV-19 12:38:00
3	3	Message-3						19-NOV-19 12:38:00
4	4	Message-4						19-NOV-19 12:38:00
MΔI	N							
MEN	UU (OVERVIEW	DATALOG	MODE	RÚN	PLOTS	HISTORY	RESET

Abbildung 28. Alarm Verlaufsbildschirm

8.7 Bildschirm sperren

Die Option "Sperren" des KrosFlo[®] TFDF[®]Systems ermöglicht es dem Benutzer, den Bildschirm für die Reinigung zu sperren, ohne den Systembetrieb unbeabsichtigt zu beeinträchtigen.

1. Wählen Sie in der Menüleiste Sperren. Die folgende Meldung wird angezeigt:

Abbildung 29. Meldung auf dem Sperrbildschirm

Lock So	reen ?
YES	NO

2. Wählen Sie Ja aus. Der Sperrbildschirm wird angezeigt:

Abbildung 30. Sperrbildschirm

Um den Bildschirm zu entsperren, halten Sie die Taste Entsper fünf Sekunden lang gedrückt.

8.8 Datenaufzeichnung (Data Log)

Dieser Bildschirm ermöglicht es dem Benutzer, Daten vom KrosFlo[®] TFDF[®]System auf ein USB-Laufwerk zu übertragen. Um diesen Bildschirm aufzurufen, wählen Sie **Data Log** aus dem Hauptmenü.

Abbildung 31. Bildschirm zur Datenaufzeichnung

Um Prozessdaten aufzuzeichnen, schließen Sie ein USB-Laufwerk an den USB-Anschluss des Reglers an. Die Datenaufzeichnung wird automatisch aktiviert, wenn ein USB-Laufwerk erkannt wird.

Wenn die Daten aufgezeichnet werden, leuchtet die USB-Bereitschaftstaste grün und zeigt "On" an. Wenn die Daten geschrieben werden, leuchtet die Taste "USB Writing" grün und zeigt kurzzeitig "On" an. Wenn die Datenaufzeichnung aktiv ist und kein USB-Laufwerk installiert ist, wird oben auf dem Bildschirm die folgende Fehlermeldung angezeigt: **RTE-004: Log-Pufferspeicher ist voll**.

Um das USB-Laufwerk zu entfernen, wählen Sie die USB-Auswurf- Taste.

WICHTIG: Stecken Sie das USB-Laufwerk vor dem Ausführen in das System. Laufdaten werden nicht aufgezeichnet, wenn das USB-Laufwerk beim Starten des Laufs nicht vorhanden ist.

8.8.1 Experimentelle Daten

Experimentelle Einstellungen und gemessene Werte werden für alle Modi auf einem USB gespeichert. Die Auflösung, mit der eine Messgröße gespeichert wird, beträgt 30 Sekunden. Das Datenprotokoll wird täglich mit dem Datum (JJMMTT) am Ende des Dateinamens gespeichert.

Abbildung 32. Datenprotokolldateien

Name	-	Date modified	Туре	Size
Plots_Datalog_Data_190405		5/2/2019 8:28 AM	Text Document	30 KB
Plots_Datalog_Data_190916		10/11/2019 9:24 AM	Text Document	26 KB
Plots_Datalog_Data_191011		10/15/2019 2:55 PM	Text Document	220 KB
Plots_Datalog_Data_191015		10/16/2019 12:00	Text Document	480 KB
Plots_Datalog_Data_191016		10/16/2019 2:31 PM	Text Document	775 KB

Aufgezeichnete Daten enthalten die folgenden Spalten:

- Zeitstempel (hh:mm:ss)
- Drucksensoren (PSI)
 - PE01 (Einspeisung)
 - PE02 (Retentat)
 - o PE03 (Permeat)
 - PE04 (Sekundärfilter)
 - PE05 (Steril-/Guard-Filter)
- TMP Berechnet: (Speisedruck + Retentatdruck)/2 Permeatdruck
- Skalierungsmesswerte (kg)
 - o Zuleitungswaage
 - o Retentate Skalierung
- Modulfläche (berechnet aus dem gewählten Filter PN): (Faseranzahl * Pi * Effektive Länge * Fasergröße)
- Durchflussmesser
 - Messung des Einspeisungsdurchflusses
 - Messung des Permeatdurchflusses (optional)
 - Permeat-Totalisator (optional, berechnet anhand der ermittelten Durchflussrate / Laufzeit)
- Trübungsmessgerät (optional)
- Berechnung des Konzentrationsfaktors (CF): Ausgangsvolumen. / (Anfangsvolumen. -(Einspeisungsgewicht zu Beginn - (Aktuelles Einspeisungsgewicht - Permanentes Hold-up))

 Diafiltration Berechnung des Volumens (DV): (Permeat gesamt - Einspeisungsgewicht beim Start des D-Modus) / (Startvolumen - (Einspeisungsgewicht zu Beginn - Einspeisungsgewicht zu Beginn des D-Modus))

Plots_Datalog_Data_191011 -	Notepad	0					_ 0 <mark></mark> X_
File Edit Format View He	elp						
pate PE01_SCALED 09:24:03 10-11-2019 09:24:33 10-11-2019 09:25:03 10-11-2019	PE02_SCALED PE03_SCALED TM 1.21740257740021 -0.4654068 1.2148189544677 -0.4635614 1.21481907367706 -0.4632821 21481907367706 -0.4632821 214819074021 214819074021 214819074021 214819074021 214819074021 2148190740 214819074 2148	P_CALC_REAL WE01_SCLD_REAL 35079193 -0.509511649608 75276947 -0.509327113628 50268555 -0.509511649608	WE02_SCLD_REAL P01_OUT_S/ 612 0.884033203125 0 387 0.880157887935638 612 0.882556855678558	CLD P02_OUT_SCLD P . 57559996843338 0 0. 571799993515015 0. 568099975585938	03_0UT_SCLD SURFACE_AREA .261599987745285 2144 0.26529997587204 0.2658899977207184 0.268899977207184	FL01_SCALED 48 172 2144 48 2144 48 2144 48	PERMEATE_TOTAL PERMEAT 0.0030000002607703 172 0.0030000000260 172 0.0030000000260 172 0.0030000000260
09:26:03 10-11-2019 09:26:03 10-11-2019 09:26:33 10-11-2019 09:27:03 10-11-2019	1.210648562023024 -0.4700202 1.22293865680695 -0.4635614 1.21906328201294 -0.4777709 1.2120509147644 -0.477401882410049	45474625 -0.510249793529 84172821 -0.515047788619 -0.523536625524261	0.891372200093089 511 0.891414701938629 995 0.885970771312714 0.886085838413230 0	0.560499966144562 0.556799948215485 55309989891052	0.272399993130201 0.276399999856949 0.27989998459816 0.28369988318848 2144	2144 48 2144 48 2144 48 48 172	172 0.003000000260 172 0.003000000260 = 0.0030000000260703
09:27:33 10-11-2019 09:28:03 10-11-2019 09:28:33 10-11-2019	1.22201597690582 -0.4845988 1.21205079555511 -0.4718657 1.21020543575287 -0.4652222	75045776 -0.514125108718 13596344 -0.528888225555 99098969 -0.525566518306	872 0.888000726699829 42 0.895843625068665 732 0.896304965019226	0.549199998378754 0.54559999704361 0.541899979114532	0.287399977445602 0.290899991989136 0.294699996709824	2144 48 2144 48 2144 48 2144 48	172 0.003000000260 172 0.003000000260 172 0.003000000260
09:29:03 10-11-2019 09:29:33 10-11-2019 09:30:03 10-11-2019	1.21666431427002 -0.4740802 1.21666431427002 -0.4722348 1.20522284507751 -0.4729728	04963684 -0.534977972507 15359116 -0.528519093990 99675369 -0.538853228092	477 0.910237550735474 326 0.896397173404694 194 0.907192647457123	0.538299977779388 0.53439998626709 0.530899941921234	0.298499971628189 0.302099972963333 0.30579999089241	2144 48 2144 48 2144 48	172 0.003000000260 172 0.003000000260 172 0.003000000260
09:30:33 10-11-2019 09:31:03 10-11-2019 09:31:33 10-11-2019 09:32:03 10-11-2019	1.212233313334 -0.47/0328 1.21297359466553 -0.4764792 1.2142653465271 -0.466698676347733 1.2052229642868 -0.46780589222908	40251925 -0.538853228092 02508926 -0.538853228092 -0.538853228092194 -0.538853228092194	194 0.905439498040344 194 0.905624151229858 0.911990702152252 0 0.904609203338623 0	0.522899943037848 0.522899985313416 .51309996843338 .519199967384338	0.3130939993013098 0.313099980354309 0.316799998283386 2144 0.320599973201752 2144	2144 48 2144 48 48 172 48 172	172 0.003000000260 172 0.003000000260 0.00300000002607703 0.00300000002607703
09:32:33 10-11-2019 09:33:03 10-11-2019 09:33:33 10-11-2019	1.19728767871857 -0.4798008 1.20688366889954 -0.4737111 1.19415056705475 -0.4772173	50152969 -0.538853228092 03200912 -0.538853228092 46429825 -0.538853228092	194 0.898611605167389 194 0.905900835990906 194 0.897596716880798	0.515699982643127 0.51199996471405 0.508599996566772	0.324099987745285 0.32779997587204 0.331399977207184	2144 48 2144 48 2144 48	172 0.003000000260 172 0.003000000260 172 0.003000000260
09:34:03 10-11-2019 09:34:33 10-11-2019 09:35:03 10-11-2019	1.19802582263947 -0.4866288 1.1923052072525 -0.477401882410049 1.19581139087677 -0.4761101	60235214 -0.538853228092 -0.544389426708221 30548477 -0.544020354747	194 0.895751237869263 0.903594195842743 0 772 0.903594195842743	0.504799962043762 501099944114685 0.497199982404709	0.335099995136261 0.338899999856949 2144 0.342599987983704	2144 48 48 172 2144 48	172 0.003000000260 0.0030000002607703 172 0.003000000260
09:35:33 10-11-2019	1.188060/6049805 -0.4/86936	640/3944 -0.564688/42160	/9/ 0.919464528560638	0.49369999/663498	0.3460999/2/24915	2144 48	1/2 0.003000000260

Abbildung 33. Beispiel für aufgezeichnete Daten

8.9 Systemmodus

Der Bildschirm "Systemmodus" ermöglicht dem Benutzer die Bedienung und Überwachung des Systems sowie die Auswahl und Verwaltung der verschiedenen Betriebsmodi. Um auf diesen Bildschirm zuzugreifen, wählen Sie **Modus** aus dem Hauptmenü.

Abbildung 34. Bildschirm Systemmodus

Das KrosFlo[®] TFDF[®]System verfügt über vier Betriebsarten:

- 1. **Konzentrationsmodus:** Automatischer Filtermodus, bei dem sich der Retentat auf einen bestimmten Konzentrationsfaktor konzentriert.
- 2. Konzentrations-/Diafiltrationsmodus: Automatisierter Filtrationsmodus, bei dem Retentat auf einen bestimmten Konzentrationsfaktor aufkonzentriert wird und dann im Diafiltrationsmodus läuft, bei dem das Retentatvolumen durch Zugabe von Puffer/Medien konstant gehalten wird.

- 3. Konzentration/Diafiltration/Konzentrationsmodus: Automatischer Filtermodus, bei dem sich Retentat auf einen bestimmten Konzentrationsfaktor konzentriert, und dann im Diafiltrationsmodus ausgeführt wird, bei dem das retentäre Volumen durch das Hinzufügen von Puffer/Medien konstant gehalten wird, und schließlich wieder auf einen endgültigen Konzentrationsfaktor konzentriert wird.
- 4. **Manueller Modus:** Offener Modus, in dem der Benutzer alle Pumpen, Tarawaagen und Sensoren starten/stoppen kann.

Um einen Betriebsmodus zu wählen, wählen Sie eine Modustaste. Der aktuell ausgewählte Modus wird grün angezeigt. Jeder Modus verfügt über einen Bildschirm mit den Betriebssollwerten und einer Übersicht.

8.10 Konzentration, Konzeption/Diafiltration und Konzeption/Diafiltration/Konzentrationsmodi

8.10.1 Bildschirm Sollwerte ausführen

Bei den automatisierten Modi ermöglicht der Bildschirm "Sollwerte ausführen" die Bearbeitung ausgewählter Sollwerte oder Optionen für den Betriebsmodus. Um auf diesen Bildschirm zuzugreifen, wählen Sie die Schaltfläche **Betrieb** am unteren Rand des Systemmodusbildschirms.

 Konzentrationsmodus: Der Bildschirm "Sollwerte ausführen" dient zur Konfiguration eines einfachen Absaugvorgangs. Der Benutzer kann den Konzentrationsfaktor (CF) oder das Permeatgewicht als Sollwert wählen

Abbildung 35. Bildschirm "Konzentrationsmodus: Sollwerte ausführen"

 Konzentrations-/Diafiltrationsmodus: Der Bildschirm "Sollwerte ausführen" wird verwendet, um eine Absenkung gefolgt von einem Pufferzugabeschritt zu konfigurieren. Benutzer können auch den Konzentrationsfaktor (CF) oder das Permeatgewicht als Endpunkt für den Konzentrationsschritt verwenden

	ALARMS	PAUSE	=	Run Setpoints	Lock	STOP SYSTEM	12:17:52 10-JAN-20
Initial Concentration							nc/Diaf Mode
		Starting	Feed Volum	1.000L	Press to Read Scale	1	
	Tar	get Speed of Feed	d pump (P-01): 2.00 l/min		Start Concel	ntration / STOP
	Target S	peed of Permeate	e pump (P-02): 15.0 ml/min	2830.82LMH	Diamtra	uun
		Initial Concentra	tion SP (CF1): 1.88	Press to Enter	Buffer	Volume Needed (L)
		Pen	meate Weigh	0.467kg	Permeate Weight		0.58 L
			Diafiltr	tion		-	
		Diafiltration 1 S	Cramus Setnoint (DV/1	1.09 DV	r i		
		Por	maata Waink	t: 1.049km			
		1 61	ineate weign	t. Horong			
						-	
	MAIN MENU	OVERVIEW	SYSTEM SETTINGS	MODE A	ETUP PLOTS		

Abbildung 36. Bildschirm "Konzentration/Diafiltration Modus Sollwerte ausführen"

 Konzentration/Diafiltration/Konzentrationsmodus: Der Bildschirm Sollwerte ausführen wird verwendet, um eine anfängliche Absenkung, eine Pufferzugabe und eine abschließende Absenkung zu konfigurieren. Die Benutzer haben dieselben Optionen für die Sollwerte wie in den vorherigen Modi. Durch Auswahl der Schaltfläche

Konzentration/Diafiltration/Konzentration starten in diesem Modus wird die Assistentenfunktion gestartet, die automatisch Berechnungen durchführt, um verschiedene Sollwerte zu bestimmen; weitere Informationen finden Sie im Abschnitt über die Assistentenfunktion

ALARMS	PAUSE	Run Setpoints	Lock	STOP SYSTEM 12:18:55 10-JAN-20
Tourset	Init Starting Feed ∨	al Concentration	Press to Read Scale	Conc/Diat/Conc Mode
Target Spe Target Spe	Speed of Permeate pump ed of Permeate pump itial Concentration SP Permeate \	(P-01): 2.00 mm (P-02): 15.0 mVmin (CF1): 1.88 Veight: 0.467kg	2830.82LMH Press to Enter Permeate Weight	Start Conc. / Diaf. / Conc. STOP Buffer Volume Needed (L) 0,58 L
1	Di Diafiltration 1 Setpoint Permeate N	afiltration (DV1): 1.09 DV Veight: 1.049kg		TFDF Wizard
F	Fina inal Concentration SP Permeate V	l Concentration (CF2): <u>1.96</u> Veight: 1.072kg		Time for Reference Diaf Pump Start 0.56hrs Diaf Pump Stop 3.59hrs Run End 4.66hrs Permeate Volume
MAIN MENU ON	PERVIEW SYSTE	M GS MODE S	LARM PLOTS	Diaf Pump Start 0.167L Diaf Pump Stop 1.076L Run End 1.399L

Abbildung 37. Konzentration/Diafiltration/Bildschirm Konzentrationsmodus Sollwerte ausführen

Befehle:

- Start: Startet die automatische Ausführung an den eingegebenen Sollwerten
- Stopp: Stoppt die Ausführung
- **Eingabe:** Diese Schaltfläche wird sowohl auf dem Übersichtsbildschirm als auch auf dem Bildschirm zum Ausführen von Sollwerten angezeigt, sobald der Modus aktiviert ist. Wählen Sie die Schaltfläche **Eingabe** aus, um zu bestätigen, dass der Automatisierungsmodus ausgeführt wurde.

Anfangskonzentrationssollwerte (alle Modi):

- Soll-Drehzahl der Förderpumpe (P-01): Die Soll-Drehzahl der magnetisch schwebenden Umwälz-/Förderpumpe steuert die Drehzahl der Pumpe mit Rückmeldung des Anklemm-Durchflussmessers (FL-01)
- Soll-Drehzahl der Permeatpumpe (P-02): Eingabe der Soll-Drehzahl der Permeatpumpe in ml/min oder VVD, das System misst die Gewichtsveränderung auf der Permeatwaage und regelt die Drehzahl der Permeatpumpe entsprechend der Soll-Permeatrate
- Erstkonzentration SP (CF1): Ein dimensionloser Konzentrationsfaktor, der zur Quantifizierung der Konzentration des Einspeisungsbestand verwendet wird, ist die Menge, die der Einspeisungsbestand im Vergleich zum anfänglichen Volumen reduziert wurde, z. B. wenn 1 L Einspeisungsbestand auf 0,25 L konzentriert ist, wobei 0,75 L als Permeat durch den Filter gepolstert sind, wurde eine 4-fache Konzentration durchgeführt, daher wäre der Konzentationsfaktor 4
- Permeatgewicht: Dieser Wert bezieht sich auf das kumulative Permeatgewicht am Ende des letzten Konzentrationsschritts, geben Sie das Zielgewicht für die Zellenmasse auf der WE-01-Waage ein, das System steuert die Drehzahl von P-03, um die Masse auf dem Zielgewicht zu halten, tarieren Sie mit dem leeren Produktgefäß, so dass nur das Gewicht der Probe

abgelesen wird, das Ziel sollte dann das Gewicht der Probe sein, wenn die Rezirkulationsleitung gefüllt ist

Diafiltration Sollwerte (Modi Konzentration/Diafiltration und Konzentration/Diafiltration/Konzentration):

 Diafiltrations-Sollwert 1 (DV1): Das Diavolumen (DV) ist ein Maß für das Volumen, das während des Diafiltrationsschritts als Permeat durch den Filter geleitet wird. Es basiert auf dem Volumen des Diafiltrationspuffers, der in den Betrieb der Einheit eingeführt wird, im Vergleich zum Retentatvolumen zu Beginn des Vorgangs, z. B. wenn zu Beginn der Diafiltration 5 I Ausgangsmaterial vorhanden sind und der Vorgang 2 DV erfordert, dann werden 10 I als Permeat durch den Filter geleitet, während kontinuierlich Puffer zugeführt wird, um 5 I Retentat zu erhalten

Endgültige Konzentrations-Sollwerte (nur Konzentrations-

/Diafiltrationsmodus/Konzentrationsmodus):

- Endkonzentration SP (CF2): Ein dimensionsloser Konzentrations faktor, der zur Quantifizierung der Einsatzstoffkonzentration nach einer Diafiltration verwendet wird; es handelt sich dabei um den Faktor zur Verringerung des Einsatzstoffvolumens im Verhältnis zum ursprünglichen Ausgangsvolumen, nicht vom Beginn der zweiten Konzentration an; wenn beispielsweise 1 I Einsatzstoff verarbeitet wird, bis 0,75 I in das Filtrat übergegangen sind und 0,25 I im Retentat verbleiben, wurde eine vierfache Konzentration durchgeführt, so dass der Konzentrationsfaktor 4X beträgt und die Eingabe 4 wäre
- **Permeatgewicht:** Dieser Wert bezieht sich auf das gesamte kumulative Permeatgewicht am Ende des letzten Konzentrationsschritts

8.10.2 Übersichtsbildschirm

Der Übersichtsbildschirm zeigt den betrieblichen Flow Path (Fließweg) und die Instrumentierung des KrosFlo[®] TFDF[®]Lab Systems. Die Prozessdaten (Durchfluss, Druck, Volumen) werden in Echtzeit auf dem Bildschirm angezeigt. Die Prozessdatenausgänge werden in den schwarzen Feldern angezeigt. Sollwerteingangsdaten werden in den grauen Feldern angezeigt. Um auf diesen Bildschirm zuzugreifen, wählen Sie die Schaltfläche **Übersicht** am unteren Rand des Systemmodusbildschirms.

Konzentrationsmodus:

- Benutzereingabe von Konzentationsfaktor oder Permeatgewicht für Konzentationsschritt
- Änderung der Richtung der Hilfspumpen (P-02 und P-03)
- Tarawaagen (WE-01 und WE-02)
- Tara-Drucksensoren (PE-01, PE-02, PE-03, PE-04, PE-05 und PE-06)
- Tara-Durchflussmesser (FL-01 und FL-02)

Abbildung 38. Bildschirm "Konzentrationsmodus: Sollwerte ausführen

Konzentration/Diafiltration Modusoperationen:

- Benutzereingabe von Konzentationsfaktor oder Permeatgewicht für Konzentationsschritt
- Benutzereingabe der Diafiltration Volumen oder Permeatgewicht für Diafiltrationsschritt
- Änderung der Richtung der Hilfspumpen (P-02 und P-03)
- Tarawaagen (WE-01 und WE-02)
- Tara-Drucksensoren (PE-01, PE-02, PE-03, PE-04, PE-05 und PE-06)
- Null-Durchflussmesser (FL-01 und FL-02)

Abbildung 39. Konzentration/Diafiltration Bildschirm "Modusübersicht"

Konzentration/Diafiltration Operationen im Konzentrationsmodus:

- Benutzereingabe von Konzentationsfaktor oder Permeatgewicht für Konzentationsschritt 1
- Benutzereingabe der Diafiltration Volumen oder Permeatgewicht für Diafiltrationsschritt
- Benutzereingabe von Konzentationsfaktor oder Permeatgewicht für Konzentationsschritt 2
- Änderung der Richtung der Hilfspumpen (P-02 und P-03)
- Tarawaagen (WE-01 und WE-02)
- Tara-Drucksensoren (PE-01, PE-02, PE-03, PE-04, PE-05 und PE-06)
- Tara-Durchflussmesser (FL-01 und FL-02)

Abbildung 40. Konzentration/Diafiltration Bildschirm Konzentrationsmodusübersicht

8.11 Assistent Funktion

Mit dem Assistenten kann das System den Prozess automatisch mit voreingestellten Sollwerte ausführen. Benutzer geben fünf Parameter ein und die Sollwerte für den Schritt Konzentration 1, Diafiltration und Konzentration 2 werden automatisch berechnet:

- Prozess-Volumen
- PCV (gepacktes Zellvolumen)
- Faktor für die Anfangskonzentration (CF 1)
- Erwarteter Endertrag
- Endgültiges Permeatvolumen

Die Funktion Assistent wird im Bildschirm Sollwerte ausführen aufgerufen, wenn der Modus Konzentration/ Diafiltration/ Konzentration ausgewählt ist. Seine Berechnungen bestimmen:

- Diafiltration Puffervolumen erforderlich
- Permeatvolumen bei Start der Diafiltrationspumpe
- Permeatvolumen bei Stopp der Diafiltrationspumpe
- Permeatvolumen am Ende der Laufzeit
- Zeit für die Referenz beim Start der Diafiltrationspumpe
- Zeit für Referenz bei Diafiltrationspumpenstopp
- Zeit für Referenz am Ende des Betriebs

So führen Sie die Assistentenfunktion aus:

1. Wählen Sie die Schaltfläche Konz./Diaf./Konz. auf dem Bildschirm "Sollwerte ausführen".

ALARMS	PAUSE	R	un Setpoints	Lock	ST	OP SYSTEM	12:18:55 1	0-JAN-20
	Init	ial Con	centration			Conc/	Diaf/Conc Mod	de
Target	Starting Feed \ Speed of Feed pump	/olume: (P-01):	2.00 l/min	Press to Read Scale		Start Conc. / D	iaf / Conc	STOP
Target Spee	ed of Permeate pump	(P-02):	15.0 ml/min	2830.82LMH				
Initial Concentration SP (CF1):		9 (CF1):	1.88	Press to Enter Permeate Weight		Buffer Volume Needed (L)		I (L)
Permeate Weight:		Weight:	0.467kg			0.58 L		
	Di	afiltratio	on		1	Т	DE Wizard	
C	Diafiltration 1 Setpoint	t (DV1):	1.09 DV					

Abbildung 41. Starten der Assistenten Funktion

Der Anfangsbildschirm des Assistenten wird angezeigt:

TFDF Wiz	TFDF Wizard					
Process Volume :	1.000L	Enter Parameters and Press Start to Begin Calculation.				
PCV (Packed Cell Volume):	18.00%					
Initial Concentration Factor CF1:	1.200					
Expected Final Yield:	90.00%	Start Calculation				
Final Permeate Pool Volume:	1.40L	CLOSE				

Abbildung 42. Startbildschirm

2. Die Assistentenfunktion zeigt zunächst Standardwerte an. Um einen Wert einzugeben und eine Berechnung durchzuführen, wählen Sie eine Einstellungsschaltfläche und geben den entsprechenden Wert ein. Wiederholen Sie diesen Schritt für alle anderen Einstellungen, die berechnet werden müssen.

Hinweis: Benutzer können Werte für eine, mehrere oder alle Einstellungen in der Assistentenfunktion eingeben.

Abbildung 43. Startassistent Funktionsbildschirm

3. Wählen Sie die Schaltfläche **Start der Berechnung** .Die Schaltfläche leuchtet grün, während die Berechnung ausgeführt wird, und im Statusfeld werden alle Benachrichtigungen angezeigt.

TFDF Wi	TFDF Wizard					
Process Volume :	1.000L	Calculation In Progress				
PCV (Packed Cell Volume):	18.00%					
Initial Concentration Factor CF1:	1.200					
Expected Final Yield:	90.00%	Calculation Started				
Final Permeate Pool Volume:	1.40L	CLOSE				

Abbildung 44. Berechnung in Bearbeitung

Sobald die Berechnung abgeschlossen ist, wird die Meldung "Berechnung erfolgreich" angezeigt.

- Wenn die Meldung Berechnungsfehler angezeigt wird, konnten anhand der Eingabe keine gültigen Sollwertkriterien ermittelt werden. Passen Sie die eingegebenen Werte an und starten Sie die Berechnung erneut.
- Wenn eine Berechnungstimeout-Meldung angezeigt wird, wählen Sie **RESET** und starten Sie die Berechnung neu.

Um die Assistentenfunktionzu beenden, wählen Sie Schließen.

8.12 Manual-Modus

Auf dem Übersichtsbildschirm im manuellen Modus können die Pumpen durch Drücken der roten Taste **Start** manuell gestartet werden. Alternativ können die Einspeisungs- (P-01) und die Permeatpumpe (P-03) in eine individuelle Automatisierungsschleife geschaltet werden, in der die Daten von einem der beiden Durchflussmesser die Pumpendrehzahl modulieren. Rufen Sie diese Funktion auf, indem Sie die Schaltfläche **Manual** auf **Auto**umschalten. Nur der individuelle Regelkreis für diese Pumpe wird aktiviert, und die Pumpe läuft mit dem eingegebenen Sollwert, der auf der Rückmeldung des Durchflussmessers (FL-01) für die Steuerung der Einspeisungspumpe (P-01) oder der Waage (WE-01) für die Steuerung der Aux/Diafiltrationspumpe (P-03) basiert.

Abbildung 45. Übersichtsbildschirm des manuellen Modus

Jede Kombination von laufenden Hilfskomponenten ist im manuellen Modus möglich, es gibt keine zu automatisierenden Sollwerte:

- Start/Stop der Hauptpumpe (P-01)
- Hilfspumpen starten/stoppen (P-02 und P-03)
- Richtungswechsel der Hilfspumpen (P-02 und P-03)
- Tarawaagen (WE-01 und WE-02)
- Tara-Drucksensoren (PE-01, PE-02, PE-03, PE-04, PE-05 und PE-06)
- Tara-Durchflussmesser (FL-01 und FL-02)

Beschreibung der Begriffe:

• **Permanenter Durchfluss:** Permeatdurchfluss berechnet durch die Drehzahl der Permeatpumpe

- VT: Volumetrischer Durchsatz Gesamtpermeatmasse/-volumen geteilt durch die Oberfläche des Filters
- Gesamtdauer: Totalisiertes Permeat-Volumen berechnet aus Pumpen-Rpm
- Reset: Setzt die Permeatsumme auf 0,00 l zurück. Es erscheint die folgende Aufforderung:

Abbildung 46. Aufforderung zum Zurücksetzen

- Pause: Drücken Sie während des Wechsels des Permeatgefäßes auf die Schaltfläche Pause, um die Permeat-Gesamtberechnung anzuhalten. Wenn das Permeatgefäß gewechselt wird, klicken Sie auf die Schaltfläche Pause, um die Permeat-Gesamtberechnung und die Permeatpumpe wieder aufzunehmen.
- Scherrate: Berechnung der Scherrate an der Faserwand, basierend auf der Anzahl der Fasern, der Faser-ID und der Durchflussrate der Rezirkulation

8.12.1 Instrumentierung

- P-01: Magnetisch schwebende Umwälz-/Einspeisungspumpe
- P-02: Permeatpumpe (obere peristaltische Pumpe an der Pumpstation)).

Hinweis: Die Vorwärtsfließrichtung entspricht dem Uhrzeigersinn und der rechten Seite der Pumpstation.

• P-03: Diafiltration/Aux-Pumpe (untere peristaltische Pumpe der Pumpstation)

Hinweis: Bestätigen Sie die Fließrichtung.

Ausführlichere Hinweise zur Funktionsweise der Übersichtsbildschirme finden Sie im Abschnitt Systemmodusauf Seite 46.

Hinweis: Alle in das System eingegebenen und gespeicherten Daten müssen auf diese Weise eingegeben werden.

8.12.2 Tarierung

Abbildung 47. Übersichtsbildschirm des manuellen Modus

- Drucksensor-Nullstellung: Nullstellung des Drucksensors auf 0,0 psi oder bar. Die Nulltaste wird während der Automatisierungssequenzen ausgeblendet, um ein versehentliches Nullsetzen zu verhindern.
- **Tarierung der Waage:** Tariert den Messwert der Waage auf 0,0000 kg, die Tarataste wird während der Automatisierungssequenzen ausgeblendet, um ein versehentliches Nullstellen zu verhindern, andere Funktionspunkte sind spezifisch für den Modus Übersichtsbildschirm beschrieben.
- Nullstellung des Durchflussmessers: Nullstellung des Durchflussmessers, der sich zwischen dem Bioreaktor und dem Filter befindet, *Nullstellung des Durchflussmessers erst, nachdem der Durchflusspfad angesaugt wurde*, die Nullstellungstaste verschwindet während der Automatisierungssequenzen, um eine versehentliche Nullstellung zu verhindern
- Reset Totalisator: Während das Permeat fließt, summiert der Totalisator das Gesamtvolumen. Um Genauigkeit zu gewährleisten, setzen Sie den Totalisator zurück, bevor Sie einen Prozess beginnen

Wählen Sie **Manual** im Bildschirm Sollwerte ausführen, um in den manuellen Modus zu wechseln. Im manuellen Modus sind die TFDF[®] -Sollwerte nicht mehr verfügbar. Um im manuellen Modus zu arbeiten, kehren Sie zum Übersichtsbildschirm zurück.

ALARMS	PAUSE	Run Setpoints	Lock	STOP SYSTEM	12:27:15 10-JAN-20
					Manual
In Manual en control is Overvi	Note: Mode, all dat try and done from th iew screen.	e			
MAIN MENU OV		IGS MODE AL	ARM PLOTS	Б	

Abbildung 48. Bildschirm "Sollwerte im manuellen Modus auswerten"

8.13 Auswahl eines Filtermoduls

Die Filteroptionen auf dem Bildschirm "Systemmodus" ermöglichen dem Benutzer die Auswahl verschiedener Filtermodule für den Betrieb und zeigen die aktuelle Auswahl an.

Abbildung 49. Filtereinstellungen

- **Modulauswahl** Zeigt die derzeit verfügbaren Filtermodule an und ermöglicht es Benutzern, das Filtermodul auszuwählen, das für ihre Anwendung am besten geeignet ist.
- Teilenummer zeigt die Teilenummer für das aktuell ausgewählte Filtermodul an
- **Oberfläche** zeigt die Membranfläche an, die sich aus dem inneren Umfang multipliziert mit der Länge der Faser ergibt

Um die verfügbaren Filtermodule anzuzeigen und eine für den Betriebsmodusauszuwählen, berühren Sie die Schaltfläche **Modul auswählen**. Der Bildschirm Filterliste wird angezeigt.

MC	DULE_NAME	FIBER_ID	FIBER_COUNT	
1	TFDF-3	4.600000		1.000000
2	TFDF-50	4.600000		1.000000
3	TFDF-150	4.600000		1.000000
(Close 4.60000	0		a •

Abbildung 50. Filterlistenbildschirm (links)

Um durch die Tabelle der Filtermodule zu blättern, wählen Sie das Symbol**Navigation** in der unteren rechten Ecke des Bildschirms. Das Navigationsmenü wird angezeigt:

Abbildung 51. Navigationsmenü

- Wählen Sie die + und Vergrößerungssymbole zum Vergrößern und Verkleinern
- Wählen Sie die Pfeile, um in der Liste nach links/rechts oder oben/unten zu blättern
- Wählen Sie das weiße/graue Kästchen aus, um die Tabellensicht zwischen abwechselnden Zeilen in Grau und Weiß, abwechselnden Spalten in Grau und Weiß oder allen weißen Spalten zu ändern

In der ersten Tabelle werden die Spalten Fasergröße und Faseranzahl angezeigt. Um die EFF-Länge anzuzeigen, wählen Sie das Symbol **Navigation** und dann den Pfeil **Rechts**, um in der Tabelle zu blättern.

MC	DULE_NAME	FIBER_COUNT	EFF_LENGTH
1	TFDF-3	1.000000	2.200000
2	TFDF-50	1.000000	40.000000
3	TFDF-150	1.000000	108.000000
	Close		

Abbildung 52. Bildschirm "Filterliste" (rechte Seite)

Wählen Sie Schließen, um zum Bildschirm Systemmodus zurückzukehren.

Um ein bestimmtes Filtermodul auszuwählen:

- 1. Wählen Sie für die gewünschte Filterfamilie eine Zeile aus, die mit der jeweiligen Teilenummer verbunden ist.
- 2. Wählen Sie das Symbol Navigation aus.
- 3. Wählen Sie die **Schaltfläche** Laden.
- 4. Wählen Sie **Schließen** aus. Die Teilenummer für das ausgewählte Filtermodul wird nun in den Filteroptionen im Bildschirm Systemmodus angezeigt und während des Systemvorgangs verwendet.

8.14 Bildschirme mit Diagrammen

Benutzer können Trenddiagramme von Pumpendrehzahl, Druck/Durchfluss, Gewichten, Daten und PID auf dem Bildschirm "Diagramm" anzeigen. Um auf diesen Bildschirm zuzugreifen, wählen Sie **Diagramme** aus dem Hauptmenü.

Abbildung 53. Bildschirm darstellen

- Um das Diagramm für einen bestimmten Satz an Trenddaten anzuzeigen, wählen Sie eine Schaltfläche auf der rechten Seite des Bildschirms aus. Die Schaltfläche für das aktuell angezeigte Diagramm ist gelb.
- Wählen Sie mit den Vorwärts- und Rückwärtspfeilen oben links auf dem Bildschirm einen Datumsbereich für die historischen Daten aus.
- Jeder Stift repräsentiert Daten für einen bestimmten Systemparameter und hat eine eindeutige Farbe im Diagramm. Um einen Parameter aus der Darstellung zu entfernen, klicken Sie auf die Eyeball-Schaltfläche neben dem Parameter, siehe Tabelle 13 für eine Liste aller dargestellten Parameter.
- Um die Stiftsymbolleiste auszublenden, schalten Sie die Pfeilschaltfläche unten links auf dem Bildschirm um

Tabelle 7. Parameterdaten

Nummer des Tags	Parameter	Einheiten
FL-01	Feed Flow Rate	LPM
FL-02	Permeatfluss	ml/min
WE-01	Gewicht des Produktbehälters	kg
WE-02	Gewicht des Permeatgefäßes	kg
PE-01	Feed Pressure	Psig oder mbar
PE-02	Retentate Pressure	Psig oder mbar
PE-03	Permeate Pressure	Psig oder mbar
P-01	Sollwert der Einspeisungspumpe	RPM oder LPM
P-02	Pumpengeschwindigkeit P-02	RPM oder ml/min
P-03	Pumpengeschwindigkeit P-03	RPM oder ml/min

8.14.1 Drehzahl der Pumpe

Die Stiftkurven im Diagramm Pumpendrehzahl zeigen Trenddaten für Folgendes an:

- P-01 PID-Sollwert
- P-01 PID PV
- P-02 PID-Sollwert
- P-02 PID PV
- P-03 PID-Sollwert
- P-03 PD PV

Abbildung 54. Darstellung der Pumpendrehzahl

8.14.2 Druck/Durchfluss

Stiftspuren im Druck-/Flussdiagramm zeigen Trenddaten für Folgendes an:

- PE-01 Speisedruck
- PE-02 Retentatdruck
- PE-03 Permeatdruck
- Rücklauf/Einspeisung
- Permeatfluss
- PE-04 Vor-Steriler-Filter
- PE-05 Post-Steriler Filter
- FL-02 Skalenfluss

Abbildung 55. Druck-/Flussdiagramm

8.14.3 Gewichte

Stiftverfolgung im Gewichtungsdiagramm zeigt Trenddaten für Folgendes an:

- Gewicht des Reaktors
- Permeat-Gewicht
- Permeat gesamt

Abbildung 56. Gewichtungsdiagramm

8.14.4 Daten

Stiftverfolgung im Datendiagramm zeigt Trenddaten für alle nachverfolgten Parameter an:

- PE-01 Einspeisungsdruck
- PE-02 Retentatdruck
- PE-03 Dauerdruck
- Calculated TMP/Berechneter TMP
- PE-04 Vor-steriler Filterdruck
- PE-05 Post-steriler Filterdruck
- Zuleitungsgewicht
- Permeat-Gewicht
- Oberfläche
- Rücklauf/Einspeisungsfluss
- Permeat gesamt
- FL-02 Skalenfluss

Abbildung 57. Datendiagramm

8.14.5 PID

Stiftverfolgung im PID-Diagramm zeigt Trenddaten für Folgendes an:

- P-01 PID-Sollwert
- P-01 PID PV
- P-02 PID-Sollwert
- P-02 PID PV
- P-03 PID-Sollwert
- P-03 PD PV

Abbildung 58. PID-Diagramm

9. Fehlersuche

System wird nicht aktiviert

Stellen Sie sicher, dass das Netzkabel des Hauptgehäuses angeschlossen und vollständig in eine Steckdose und in die Steckdose des Gehäuses eingesteckt ist.

Der Permeat- und/oder Medien-/Pufferspeisestrom ist viel höher/niedriger als erwartet

- 1. Vergewissern Sie sich, dass der Farbcode auf dem peristaltischen Schlauch mit dem Farbcode für die Schlauchauswahl im Bildschirm Einstellungen übereinstimmt.
- 2. Vergewissern Sie sich, dass die Schläuche in der peristaltischen Pumpe richtig gespeist wird und richtig im Pumpenkopf sitzt.
- 3. Vergewissern Sie sich, dass die gewählte Schlauchgröße für den Permeat- und Diafiltrationsdurchsatz geeignet ist.

Retentatfluss ist zu gering, bewegt sich nicht

- 1. Vergewissern Sie sich, dass der Magnetschwebepumpenkopf entlüftet ist und keine Luft eingeschlossen ist.
- 2. Stellen Sie sicher, dass der Pumpenkopf richtig in der Magnetschwebepumpe sitzt.
- 3. Untersuchen Sie den Pumpenkopf auf Verstopfungen.
- 4. Prüfen Sie den Filter auf Verstopfungen.

Pumpstation antwortet nicht

Es gibt mehrere verschiedene Kommunikationsprotokolle für die Pumpstation. Um die meisten Probleme zu beheben, schalten Sie das System aus, trennen Sie das 26-polige Kommunikationskabel von der Pumpstation zum Hauptgehäuse und schließen Sie es wieder an (siehe Abschnitte zum Anschließen der Systemkabel).

Hinweis: die peristaltischen Pumpen (P-02 und P-03) funktionieren unabhängig davon, an welchem Anschluss des Hauptgehäuses das Versorgungskabel der Station angeschlossen ist. Die Umwälz-/Einspeisungspumpe muss jedoch an den richtigen Anschluss angeschlossen werden, um zu funktionieren.

Datenaufzeichnungsmeldung "Puffer voll"

Diese Meldung zeigt an, dass das USB-Laufwerk entweder nicht angeschlossen ist oder nicht funktioniert.

- 1. Stellen Sie sicher, dass das USB-Laufwerk in den USB-Anschluss an der rechten Seite des Hauptgehäuses eingesteckt ist.
- 2. Wenn bereits ein USB-Laufwerk vorhanden ist, versuchen Sie es mit einem anderen Laufwerk.
- 3. Rufen Sie den Bildschirm Datenaufzeichnung auf und stellen Sie sicher, dass er auf Aufzeichnung eingestellt ist.

10. Wartung

Das KrosFlo[®] TFDF[®]Lab System ist robust und für den Einsatz mit anderen Prozess- und Laborgeräten konzipiert. Der Rahmen, der Schaltschrank und die Pumpen können durch Abwischen von Oberflächen mit milden Reinigungsmitteln und/oder warmem Wasser, einem feuchten Tuch oder Labortüchern gereinigt werden. Der Bildschirm sollte mit Bildschirmreiniger und Bildschirmtüchern gereinigt werden.

Alle Reparaturen des Systems müssen von einem qualifizierten Repligen Servicetechniker durchgeführt werden. Das Öffnen des Systems und Reparaturversuche durch den Benutzer oder Dritte führen zum Erlöschen der Produktgarantie.

Das KrosFlo® TFDF®Lab System wird in Marlborough, MA, USA, hergestellt.

11. Allgemeine Informationen

11.1 Sicherheit Leitlinien

Abbildung 59. Achtung und Warnung vor magnetischen Kräften

CAUTION				
Magnetic	Forces			
Pay atten the pump	tion to the head. It ha	magnetic fo	orces when voided that	handling magnetic

the pumphead. It has to be avoided that magnetic parts are attracted resulting in contamination or damage (for example cracks) of the housing or impeller. Specifically pay attention to the magnetic forces, when handling two pumpheads at the same time.

The pumphead contains a rotor magnet with high field strength. Pace maker may be influenced and magnetic forces may lead to contusions. Keep distance to pace makers and handle pumpheads with care.

Tabelle 8. Warnung: Beschränkung der Produktverwendung

Symbol	Beschreibung
Vorsicht	Gefahrenrisiko. Beziehen Sie sich hinsichtlich der Art von Gefahren und Korrekturmaßnahmen auf die Bedienungsanleitung
	Dieses Produkt ist nicht für die Verwendung in patientenbezogenen Anwendungen ausgelegt oder vorgesehen, einschließlich, aber nicht beschränkt auf die medizinische und zahnärztliche Nutzung, und wurde daher nicht zur FDA-Genehmigung eingereicht
	Dieses Produkt ist weder für den Einsatz in gefährlichen Bereichen gemäß ATEX oder NEC (National Electrical Code) ausgelegt noch vorgesehen; einschließlich, aber nicht beschränkt auf den Einsatz mit entflammbaren Flüssigkeiten; wenden Sie sich an das Werk, wenn Sie Produkte für diese Art von Anwendungen benötigen.

11.2 Systemspezifikationen

Tabelle 9. Systemausgabe

Beschreibung	Spezifikationen
Zuleitung / Typ der Umwälzpumpe	Magnetisch gelagerte Pumpe
Zuleitung / Kapazität der Umwälzpumpe	0 - 11000 U/min, 0 - 10 l/min @ 0,0 bar, 0,0 - 21,8 psi (1,5 bar)
Typ der Diafiltrations- und Permeatpumpe	Peristaltik
Diafiltration und Kapazitäten der Permeatpumpen	0,1 - 100 U/min (0,01 U/min Auflösung) Maximum 340 ml/min (4,8 mm ID und 1,6 mm Dicke) 0,0002 - 35 ml/min/Kanal 3 Kanäle, 8 Rollen 14,5 psi (1,0 bar) max Differentialdruck
Display	Automatisierung direkt 12" LCD-Touchscreen
Retentat-Durchflussmesser	Ultraschall-Durchflussmesser zum Anklemmen 0 - 8000 ml/min, 2 % Genauigkeit (±16 ml/min) Kalibriert für PharmaPure®-Schlauch Nr. 15
Empfohlenes Prozessvolumen	1 - 50 l
Anzahl der unterstützten Drucksensoren	5
Bereich des Drucksensors	-14 - 30 psi (-1 - 2 bar)
TFDF [®] Filterfläche unterstützt	2 - 150 cm ²
Anzahl der unterstützten Waagen	2

Tabelle 10. Systemeingabe

Beschreibung	Spezifikationen
Leistungsbedarf	120 VAC, 10 A 230 VAC, 5 A, 50/60 Hz

Tabelle 11. Systemaufbau

Beschreibung	Gewicht
Gewicht des Steuergeräts	36 lbs (16,2 kg)
Abmessungen des Steuergeräts	16 x 13 x 21 in (40 x 33 x 53 cm)
Gewicht der Pumpstation	16 lbs (7,3 kg)
Abmessungen Pumpstation	11 x 11 x 19 Zoll (min)/39 Zoll (max) (28 x 28 x 48/99 cm)
Typ des Steuergeräts	PLC
Schutzart von Steuergerät und Pumpstation	IP20
Werkstoff des Gehäuses	Delrin und pulverbeschichtetes/eloxiertes Aluminium

Tabelle 12. Systemumgebung

Beschreibung	Spezifikationen
Temperatur, Betrieb	4° bis 40° C
Luftfeuchtigkeit (nicht-kondensierend)	15% - 95% 10% - 50%
Höhe	Weniger als 2000 m
Geräuschpegel	< 75 dBa @ 1 Meter
Verschmutzungsgrad	Verschmutzungsgrad 2
Chemische Beständigkeit	Gehäuse: Pulverbeschichtetes Aluminium Filterständer: Delrin und pulverbeschichtetes/eloxiertes Aluminium Fließweg-Komponenten: Polypropylen, Polycarbonat, Polysulfon und C-Flex/PharmaPure®-Materialien

11.3 Systemkomponenten

Tabelle 13. Systemkomponenten Liste

Pos.	Enthaltene Komponenten
Steuergerät	Steuergerät mit am Gehäuse angeschlossenen Kabeln
Pumpenstation	 Pumpstation Anhänge Peristaltische Pumpen x2 Magnetschwebepumpe Ständerhalterung mit Verriegelungsknopf Durchflussmesser A/C-Netzkabel (Versionen für USA, Großbritannien, EU und China enthalten) Pumpstation Stromkabel (5-polig) Regler-Pumpenstation Kommunikationskabel (26 Pin) Schlauchführungsstange Verlängerungsstange mit Verriegelungsknopf Stangenhülse mit Verriegelungsknopf Filterklammer mit 2 Verriegelungsknöpfen
Waage	Digitale Waagen x2 Angeschaltete RS232-Kommunikationskabel x232

12. Index

Alarm	
Calibration	33, 34, 35, 36, 37
Caution	9, 10, 71
CF	7, 46, 47, 53
Components	10, 12, 56, 72, 73
Concentration	31, 32, 46, 49, 50
Connections	
Danger	9, 71
Diafiltration 7, 11, 12, 31	, 46, 48, 49, 50, 51,
	52, 53, 56, 57, 71
Flow path12, 15	5, 18, 19, 21, 50, 58
Installation	8, 18, 19, 34, 36
LMH	31
Mode31, 46, 47, 48	3, 49, 50, 53, 58, 59

Precautions	9
Pressure sensor	
ProConnex	
Pump control	40
Pump Station	. 11, 12, 14, 16, 57, 69, 72, 73
Requirements	
Safety	
Scale	
Set-up	
Shear	
Specifications	
TMP	7, 45
Warning	
Wizard	. 11, 31, 32, 33, 48, 53, 54, 55

